SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI TỈNH HÀ TĨNH LỚP 9 THCS - NĂM HỌC 2010 - 2011 ĐỀ CHÍNH THỨC Môn Toán Thời gian làm bài : 150 phút Ngày thi: 17 / 03 / 2011 Bài 1. Cho phương trình: . a) Giải phương trình khi m = 2. b) Tìm m để phương trình có đúng hai nghiệm dương phân biệt. Bài 2. a) Cho a, b, c là những số nguyên thỏa mãn điều kiện: Chứng minh rằng chia hết cho 3. b) Giải phương trình: , biết rằng a, b là các số hữu tỉ và là một nghiệm của phương trình. Bài 3. Cho x, y là các số nguyên dương, thỏa mãn: . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức: P = Bài 4. Cho nửa đường tròn tâm O, đường kính AB = 2R, một dây cung MN = R di chuyển trên nửa đường tròn. Qua M kẻ đường thẳng song song với ON cắt đường thẳng AB tai E. Qua N kẻ đường thẳng song song với OM cắt đường thẵng AB tại F. a) Chứng minh tam giác MNE và tam giác NFM đồng dạng . b) Gọi K là giao điểm của EN và FM. Hãy xác định vị trí của dây MN để tam giác MKN có chu vi lớn nhất. Bài 5. Cho a, b, c là những số dương thỏa mãn: . Chứng minh : . _________ Hết ________ Họ và tên thí sinh: ...................................................... Số báo danh: ..................... SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ TĨNH KỲ THI CHỌN HỌC SINH GIỎI TỈNH CẤP THCS - NĂM HỌC 2010-2011 LỜI GIẢI MÔN TOÁN LỚP 9 (Lời giải gồm 02 trang) Bài Đáp án Bài 1 a) (1). Đk: . Khi m = 2: (1) trở thành (thoả mãn) b) Đặt (2), ta có : . Khi đó (1) trở thành : (3) Từ (2) ta được , với mỗi giá trị tùy ý của t, phương trình này luôn có đúng 1 nghiệm dương (nghiệm còn lại âm), mà (3) đã có 1 nghiệm t = 1, nên để (1) có đúng 2 nghiệm dương phân biệt thì điều kiện cần và đủ là : Phương trình (4) hoặc có nghiệm kép hoặc có 2 nghiệm phân biệt, trong đó có 1 nghiệm t = 1 . Điều đó tương đương với : ; (cả 2 giá trị thoả mãn) Vậy cácgiá trị của m cần tìm là Bài 2 a) Từ giả thiết (*) Từ (*) dễ thấy khi a, b, c thì , đpcm. b) (1) Do là nghiệm của (1) nên: Biến đổi và rút gọn, ta được: (2) Do a, b là các số hữu tỷ nên (2) chỉ xảy ra khi và chỉ khi Thay các giá trị của a, b vào (1), ta có: . . Vậy phương trình (1) có 3 nghiệm là: Bài 3 Có thể giả sử: x > y, suy ra: (1). Đặt 2011 = a. Khi đó: P = P = P (2) Vì 3a - 2 >0, (do (1)) nên hàm số y = mX2 (với m = 3a - 2, ) đồng biến khi X > 0, suy ra P là hàm số đồng biến Suy ra: Giá trị lớn nhất của P đạt được tại x = 2010 (y =1) và max P = 8 120 605 021. Giá trị nhỏ nhất của P đạt được tại x = 1006 (y = 1005) và min P = 2 035 205 401. Bài 4 a) Từ giả thiết suy ra: (đồng vị) (đồng vị) nên ~ 2 (1) Ta có 0 (cùng bù với do ME//ON) Tương tự nên (2) Từ (1), (2) ta được ~ b) Ta có : = . nên K thuộc cung chứa góc 1200 dựng trên đoạn MN. Trên tia MK, lấy điểm I sao cho KI = KN thì tam giác IKN là tam giác đều nên MK + KN = MI. Do I thuộc cung chứa góc 600 của đường tròn đi qua 3 điểm M, N, I nên MI lớn nhất (tức chu vi tam giác MKN lớn nhất, vì cạnh MN = R không đổi) khi và chỉ khi MI là đường kính, khi đó K là trung điểm của cung MN nên đó là vị trí cần xác định của dây MN. Bài 5 Gọi vế trái của bất đẳng thức cần chứng minh là P, ta cần chứng minh P (1) Áp dụng bất đẳng thức Cô si cho 3 số dương, ta có: (2) Tương tự, ta có: (3) , (4) Lấy (2) + (3) + (4) theo từng vế rồi rút gọn và áp dụng tiếp bất đẳng thức Cô si, ta được: , đpcm. (Dấu “=” xảy ra ) ____________ Hết ___________
Tài liệu đính kèm: