Đề thi chọn học sinh giỏi huyện năm hoc: 2007 - 2008 môn thi: Giải toán bằng máy tính cấm tay lớp 9

doc 4 trang Người đăng minhphuc19 Lượt xem 834Lượt tải 0 Download
Bạn đang xem tài liệu "Đề thi chọn học sinh giỏi huyện năm hoc: 2007 - 2008 môn thi: Giải toán bằng máy tính cấm tay lớp 9", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề thi chọn học sinh giỏi huyện năm hoc: 2007 - 2008 môn thi: Giải toán bằng máy tính cấm tay lớp 9
Đề THI chọn học sinh giỏi huyện 
năm hoc: 2007 - 2008
Môn thi: Giải toán bằng MTBT lớp 9
Bài 1: (2 điểm) Tớnh giỏ trị của cỏc biểu thức sau:
1.1) A = 200720082; B = (Chớnh xỏc với 4 chữ số ở phần thập phõn)
1.2) M = với 
Bài 2: (1,5 điểm)
2.1) Tỡm tổng cỏc chữ số của số A2 nếu A = 99998 (số A cú 2007 chữ số 9)
2.2) Tỡm ba chữ số tận cựng của số A = 
Bài 3: (2 điểm)
3.1) Tớnh giỏ trị (kết quả ghi ở dạng phõn số) của biểu thức 
M = 0,1(23) + 0,6(92) 
3.2) Số thập phõn vụ hạn tuần hoàn 3,5(23) được phõn số nào sinh ra?
3.3) Tỡm chữ số đứng ở vị trớ thứ 2007 ở phần thập phõn trong kết quả của phộp chia 19 cho 21.
Bài 4: (2 điểm)
Cho biểu thức P(x) = 
	4.1) Tớnh giỏ trị của P() chớnh xỏc đến 5 chữ số ở phần thập phõn và kết quả của P(2005) ở dạng phõn số.
	4.2) Tỡm x biết P(x) = 
Bài 5: (1,5 điểm) Với mỗi số nguyờn dương n, đặt A(n) = 
	5.1) Tớnh A(2007)
	5.2) So sỏnh A(2008) với A(20072008).
Bài 6: (2 điểm)
6.1) Biết rằng (2 + x + 2x3)15 = a0 +a1x + a2x2 + a3x3 + . + a45x45.
	Tớnh S = a1 +a2 +a3 +  + a45
6.2) Biết rằng số dư trong phộp chia đa thức x5 + 4x4 + 3x3 + 2x2 – ax + 7 cho đa thức (x + 5) bằng 2007. Tỡm a.
Bài 7: (3 điểm)
7.1) Cho S = 
	a) Viết một quy trỡnh bấm mỏy để tớnh S
	b) Tớnh S(10); S(12) và S(2007) với 6 chữ số ở phần thập phõn.
	7.2) Viết quy trỡnh bấm mỏy để tỡm và tỡm một ước số của số 729698382 biết rằng ước số đú cú tận cựng bằng 7. 
Bài 8: (2 điểm)
8.1) Tỡm hai chữ số tận cựng của số 2999 và tỡm 6 chữ số tận cựng của số 521
8.2) Biết rằng số 80a1a2a3a4a5a6a73 là lập phương của một số tự nhiờn. Hóy tỡm cỏc chữ số a1;a2 ;a3; a4;a5 ;a6;a7. 
Bài 9: (2 điểm)
9.1) Với mỗi số nguyờn dương n >1, đặt S(n) = 1.2 + 2.3 + 3.4 +  + n(n + 1)
	Tớnh S(100) và S(2005).
9.2) Cho ba số tự nhiờn a = 9200191; b = 2729727 và c = 13244321. Hóy tỡm ước số chung lớn nhất và bội số chung nhỏ nhất của ba số đú.
Bài 10: (2 điểm)
10.1) Tỡm một cặp số tự nhiờn (x; y) sao cho 7x2 + 13y2 = 1820
10.2) Tỡm hai số dương (với 4 chữ số thập phõn) x; y thoả món điều kiện = 2,317 và x2 – y2 = 1,654
Đỏp ỏn
Bài 1:
1.1) A = 402885505152064; B = 0,5563
Mỗi đỏp số đỳng 0,5 điểm
1.2) M= 3486784401 (vỡ 320.Q = P nờn = 320)
1 điểm
Bài 2:
2.1) Ta cú: 982 = 9604; 9982 = 996004; ; 
99  982 = 99960004 (n số 9; n số 0)
ị Tổng cỏc chữ số của A2 là: 9.2007 + 6 + 4 = 18073
Mỗi đỏp số đỳng, 0,75 điểm
2.2) Ba chữ số tận cựng của số A là 355
Bài 3:
3.1) M = 
0,75 điểm
3.2) Số thập phõn tuần hoàn 3,5(23) được sinh ra bởi phõn số 
0,5 điểm
3.3) chữ số đứng ở vị trớ thứ 2007 ở phần thập phõn trong kết quả của phộp chia 19 cho 21 là chữ số 4
0,75 điểm
Bài 4:
4.1) P() = 0,17053; P(2005) = 
Mỗi đỏp số đỳng 0,5 điểm
4.2) x = 2007; x = - 2012
Mỗi đỏp số đỳng 0,5 điểm
Bài 5:
5.1) A(2007) = 1
5.2) A(2008) = A(20072008) = 1
Mỗi đỏp số đỳng, chấm 0,75 điểm.
NX: Rỳt gọn biểu thức hay hơn
Bài 6:
6.1) S = 515 – 215 = 30517545357
6.2) a = 590
Mỗi đỏp số đỳng, 1 điểm
Bài 7:
7.1)
a) Ta cú: =
=
Do đú S = (n³2)
Viết đỳng quy trỡnh: 0,5 điểm
b) S(10) = 10,416667; S(12) = 12, 428571; S(2007) = 2007,499502
(Để tớnh được S(n) với giỏ trị n khỏ lớn thỡ phải sử dụng phộp biến đổi để rỳt gọn S)
Mỗi đỏp số đỳng, 0,5 điểm
7.2)
a) Viết đỳng quy trỡnh theo loại mỏy sử dụng, 0,5 điểm.
b) NX: 729698382 khụng chia hết cho 7.
Quy trỡnh: 7 shift sto A; Alpha A Apha = Alpha A + 10 Alpha : 729698382 á A = = =
Một ước số cần tỡm là 27 hoặc 57
0,5 điểm
Bài 8:
8.1) Hai chữ số tận cựng của số 2999 là 88.
 Sỏu chữ số tận cựng của số 521 là 203125
Mỗi đỏp số đỳng, chấm 0,75 điểm.
8.2) Đặt 80a1a2a3a4a5a6a73 = x3; (x ẻ N)
Ta cú : 20003 = 8000000000; 
20103 = 8120601000
Do đú 2000 Ê x Ê 2010; do x cú tận cựng bằng 7 nờn
x = 2007
80a1a2a3a4a5a6a73 = 20073 = 8084294343
0,5 điểm
Bài 9:
9.1) 3S(n) = 1.2.3 + 2.3.3 + 3.4.3 +  + n(n + 1).3
= 1.2.3 + 2.3.(4 – 1)+ 3.4.(5 – 1) +  + n(n + 1) [(n + 2) – (n – 1)]
= n(n+1)(n+2)
S(100) = 343400; S(2005) = 2690738070
9.2) ƯCLN (a; b; c) = 1; BCNN(a; b; c) = 3289957637363397
Mỗi đỏp số đỳng, chấm 0,5 điểm.
Bài 10:
10.1) 7x2 + 13y2 = 1820 Û x = 
Quy trỡnh: 1 shift sto A; Alpha A Apha = Alpha A + 1 Alpha : ( 1820 – 13 Alpha A x 2 ) ab/c 7 = = =
Một cặp số tự nhiờn (x; y) thoả món điều kiện là x =13; y = 7
1 điểm
10.2) Hai số dương x; y thoả món điều kiện bài ra là x = 1,4257; y = 0,6153
1 điểm

Tài liệu đính kèm:

  • docDe_thi_casio_so_03.doc