Đề thi chọn học sinh giỏi cấp tỉnh Bắc Ninh năm học: 2010-2011 môn thi: Toán – lớp 12 – thpt

doc 1 trang Người đăng khoa-nguyen Lượt xem 1001Lượt tải 0 Download
Bạn đang xem tài liệu "Đề thi chọn học sinh giỏi cấp tỉnh Bắc Ninh năm học: 2010-2011 môn thi: Toán – lớp 12 – thpt", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề thi chọn học sinh giỏi cấp tỉnh Bắc Ninh năm học: 2010-2011 môn thi: Toán – lớp 12 – thpt
ĐỀ CHÍNH THỨC
UBND TỈNH BẮC NINH
SỞ GIÁO DỤC VÀ ĐÀO TẠO
ĐỀ THI CHỌN HỌC SINH GIỎI CẤP TỈNH
NĂM HỌC 2010 – 2011
MÔN THI: TOÁN – LỚP 12 – THPT
Thời gian làm bài: 180 phút (Không kể thời gian giao đề)
Ngày thi 22 tháng 3 năm 2011
================
Câu 1:(5 điểm)
1/ Cho hàm số có đồ thị là (T). Giả sử A, B, C là ba điểm thẳng hàng trên (T), tiếp tuyến của (T) tại các điểm A, B, C lần lượt cắt (T) tại các điểm A’, B’, C’ (tương ứng khác A, B, C). Chứng minh rằng A’, B’, C’ thẳng hàng.
2/ Cho hàm số , chứng minh rằng với mọi số nguyên dương n đồ thị hàm số (1) luôn cắt trục hoành tại đúng một điểm.
Câu 2:(5 điểm)
1/ Giải phương trình: .
2/ Giải phương trình: .
Câu 3:(3 điểm)
	Kí hiệu là tổ hợp chập k của n phần tử , tính tổng sau:
.
Câu 4:(5 điểm)
1/ Cho hình chóp tứ giác S.ABCD, có đáy ABCD là hình bình hành, , các cạnh bên của hình chóp bằng nhau và bằng . Tìm cosin của góc giữa hai mặt phẳng (SBC) và (SCD) khi thể tích của khối chóp S.ABCD là lớn nhất.
2/ Cho tứ diện ABCD có . Gọi E là chân đường phân giác trong góc A của tam giác ABD. Chứng minh rằng tam giác ACE vuông.
Câu 5:(2 điểm)
Cho hai số thực x, y thỏa mãn: . Chứng minh rằng: 
.
 HẾT
(Đề thi gồm có 01 trang)

Tài liệu đính kèm:

  • docde toan 12 nam 2011.doc
  • docDap an toan 12 nam 2011.doc