Đề ôn tập môn Toán Lớp 9 - Đề số 28 (Có đáp án)

doc 5 trang Người đăng duyenlinhkn2 Ngày đăng 07/08/2024 Lượt xem 157Lượt tải 0 Download
Bạn đang xem tài liệu "Đề ôn tập môn Toán Lớp 9 - Đề số 28 (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề ôn tập môn Toán Lớp 9 - Đề số 28 (Có đáp án)
ĐỀ ễN TẬP SỐ 28.
Cõu 1.
a) Khụng dựng mỏy tớnh, hóy tớnh: .
b) Chứng minh rằng: với x ≥ 0 và x ≠ 9 .
Cõu 2. 
 Cho parabol (P) : y = x2 và đường thẳng (d): y = 2(m - 1)x + m2 + 2m
 (m là tham số, m ẻ R).
 a) Tỡm m để đường thẳng (d) đi qua hai điểm I(1; 3).
 b) Chứng minh rằng parapol (P) luụn cắt đường thẳng (d) tại hai điểm phõn biệt A, B. Gọi x1, x2 là hoành độ hai điểm A, B, Tỡm m sao cho: x12 +x22 + 6x1x2 > 2016 .
Cõu 3.
Giải hệ phương trỡnh: 
Cho tam giỏc vuụng cú độ dài cạnh huyền bằng 15 cm. Hai cạnh gúc vuụng cú độ dài hơn kộm nhau 3cm. Tỡm độ dài hai cạnh gúc vuụng của tam giỏc vuụng đú. 
Cõu 4. 
 Cho đường tròn (O) vàđiểm A nằm ngoài đường trũn. Từ A kẻ hai tiếp tuyến AB, AC với đường trũn (B, C là hai tiếp điểm) .
 a) Chứng minh: Tứ giỏc ABOC nội tiếp .
 b) Gọi H là trực tõm tam giỏc ABC, chứng minh tứ giỏc BOCH là hỡnh thoi.
 c) Gọi I là giao điểm của đoạn OA với đường trũn. Chứng minh I là tõm đường trũn nội tiếp tam giỏc ABC .
 d) Cho OB = 3cm, OA = 5 cm. Tớnh diện tớch tam giỏc ABC . 
Cõu 5. 
 Giải phương trỡnh: x3 + (3x2 – 4x - 4) = 0 .
HƯỚNG DẪN GIẢI.
BÀI
NỘI DUNG
1
 .
Với x ≥ 0 và x ≠ 9 , ta cú:
Vậy với x ≥ 0 và x ≠ 9
2
Để đường thẳng (d): y = 2(m - 1)x + m2 + 2m đi qua điểm I(1; 3) 
 3 = 2(m - 1).1 + m2 + 2m m2 +4m -5 = 0
Ta cú : a + b + c = 1 + 4 – 5 = 0 nờn phương trỡnh trờn cú hai nghiệm :
Vậy m = 1 hoặc m = -5 thỡ đường thẳng (d) đi qua điểm I(1; 3). 
Phương trỡnh hoành dộ giao điểm của parapol (P) và đường thẳng (d) là :
 x2 = 2(m - 1)x + m2 + 2m
 ( *) 
Phương trỡnh (*) cú : > 0 với mọi m .
Nờn phương trỡnh (*) luụn cú hai nghiệm phõn biệt với mọi m 
Do đú parapol (P) luụn cắt đường thẳng (d) tại hai điểm phõn biệt A, B.
Gọi x1, x2 là hoành độ hai điểm A, B thỡ x1, x2 là hai nghiệm của phương trỡnh (*) .
Theo hệ thức Vi –ột ta cú: 
Theo giả thiết , ta cú: x12 +x22 + 6x1x2 > 2016
Vậy là giỏ trị cần tỡm.
3
Ta cú: 
Vậy hệ phương trỡnh cú nghiệm duy nhất (x ;y) = (2;3)
Gọi độ dài cạnh gúc vuụng nhỏ là x (cm) với 0<x < 15.
Vỡ hai cạnh gúc vuụng cú độ dài hơn kộm nhau 3cm nờn độ dài cạnh gúc vuụng cũn lại là x + 3(cm)
Vỡ tam giỏc vuụng cú độ dài cạnh huyền bằng 15 cm nờn theo định lý Py –ta go ta cú phương trỡnh: x2 + (x +3)2 = 152 
Ta cú: 
Phương trỡnh trờn cú hai nghiệm: (thỏa món), (loại )
Vậy độ dài hai cạnh gúc vuụng của tam giỏc vuụng đú là 9cm và 9 + 3 = 12cm.
4
Hỡnh vẽ
a)
Ta cú AB và AC là hai tiếp tuyến cắt nhau của đường trũn (O) , với B,C là hai tiếp điểm nờn OB AB và OC AC 
 và 
Tứ giỏc ABOC cú tổng hai gúc đối : 
Do đú tứ giỏc ABOC nội tiếp đường trũn.
b)
Ta cú H là trực tõm của tam giỏc ABC nờn BH và CH là hai đường cao của tam giỏc ABC BH AC và CH AB 
mà theo cõu a) OB AB và OC AC
 OB // CH và OC // BH
 Tứ giỏc BOCH là hỡnh bỡnh hành 
Lại cú OB = OC ( bỏn kớnh) nờn tứ giỏc BOCH là hỡnh thoi.
c)
Theo tớnh chất hai tiếp tuyến cắt nhau ta cú :
 AO là tia phõn giỏc của é BAC và OA là tia phõn giỏc của é BOC.
Mà I là giao của OA với đường trũn tõm O nờn I là điểm chớnh giữa của cung nhỏ BC
é ABI = é IBC
 BI là tia phõn giỏc của é ABC 
Vỡ I là giao điểm của hai đường phõn giỏc AO và BI của tam giỏc ABC nờn I cỏch đều ba cạnh của tam giỏc ABC. Vậy I là tõm đường trũn nội tiếp tam giỏc ABC.
d)
Gọi E là giao điểm của BC và OA 
Ta cú AB = AC (tớnh chất hai tiếp tuyến cắt nhau)
 OB = OC (bỏn kớnh)
=> AO là đường trung trực của BC 
=> AO BC tại E và BC = 2BE
Xột tam giỏc ABO vuụng tại B cú BE là đường cao nờn theo hệ thức lượng trong tam giỏc vuụng ta cú :
OB2 = OE.OA 
 => AE = OA – OE = 5- 1,8 = 3,2cm
BE2 = AE.OE = 3,2.1,8 = > BE = 2,4cm => BC = 4,8cm
Vậy diện tớch tam giỏc ABC là : AE.BC =.3,2.4,8= 7,68cm2
5
Điều kiện : x.
Đặt với y ta được: 
*) Khi x = y ta cú : x = 
*) Khi x + 2y = 0 ta cú : x +2 = 0 
(thỏa món x )
Vậy phương trỡnh cú hai nghiệm: 

Tài liệu đính kèm:

  • docde_on_tap_mon_toan_lop_9_de_so_28_co_dap_an.doc