ĐỀ ÔN TẬP SỐ 10. Bài 1: Cho biểu thức: ( với a > 0; a 4) a, Rút gọn biểu thức P b, Tính giá trị biểu thức P khi a = 9 Bài 2: Cho hàm số bậc nhất y = ax + 5 a) Tìm a để đồ thị hàm số đi qua điểm A (-2; 3) b) Vẽ đồ thị hàm số vừa tìm được ở câu a). Bài 3: Cho hệ phương trình: a) Giải hệ phương trình khi m = 3 b) Tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m. c) Tìm giá trị của m thoả mãn: 2x2 – 7y = 1 d) Tìm các giá trị của m để biểu thức nhận giá trị nguyên. Bài 4: Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE Chứng minh tứ giác CEHD nội tiếp . Bốn điểm A, E, D, B cùng nằm trên một đường tròn. Chứng minh ED = BC. Chứng minh DE là tiếp tuyến của đường tròn (O). Tính độ dài DE biết DH = 2 Cm, AH = 6 Cm. Bài 5: Cho hai số dương x,y thỏa x+y=1. Tìm GTNN của biểu thức HƯỚNG DẪN GIẢI. BÀI NỘI DUNG 1 Ta có: Vậy P = Thay a = 9 vào biểu thức P ta được: P = Vậy khi a = 9 thì P = 4. Để đồ thị hàm số y = ax + 5 đi qua điểm A (-2; 3) 3 = a.(-2) + 5 -2a + 5 = 3 -2a = 3 – 5 -2a = - 2 a = 1 Vậy khi a = 1 thì đồ thị hàm số y = ax + 5 đi qua điểm A (-2; 3) Khi a = 1 thì công thức hàm số là: y = x + 5 Cho x = 0 y = 5 A (0; 5) y = 0 x = -5 B (-5; 0) Đồ thị hàm số y = x + 5 là đường thẳng đi qua 2 điểm A (0; 5); B (-5; 0) Thay m = 3 vào hệ phương trình ta có hệ phương trình trở thành Vậy với m = 3 thì hệ phương trình có 1 nghiệm duy nhất ( x ; y) = Tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m. Xét hệ phương trình Từ phương trình thay vào phương trình ta có phương trình: Vậy là đẳng thức liên hệ giữa x và y không phụ thuộc vào m. Vậy hệ phương trình có 1 nghiệm duy nhất (x; y ) = +) Để hệ phương trình có nghiệm (x; y) thoả mãn 2x2 - 7y = 1 Vậy với m = 2 hoặc m = 1 thì hpt trên có nghiệm thoả mãn điều kiện: 2x2 - 7y = 1 Thay ; vào biểu thức A = ta được biểu thức A = = = = = = = Để biểu thức A = nhận giá trị nguyên nhận giá trị nguyên nhận giá trị nguyên (m+2) là ước của 5. Mà Ư(5) = Kết hợp với điều kiện ; Vậy với các giá trị m = -1; m = -3; m = -7; m = 3 thì giá trị của biểu thức nhận giá trị nguyên. Hình vẽ a) Xét tứ giác CEHD ta có: Ð CEH = 900 ( Vì BE là đường cao) Ð CDH = 900 ( Vì AD là đường cao) => Ð CEH + Ð CDH = 1800 Mà Ð CEH và Ð CDH là hai góc đối của tứ giác CEHD , Do đó CEHD là tứ giác nội tiếp b) Theo giả thiết: BE là đường cao => BE ^ AC => ÐBEA = 900. AD là đường cao => AD ^ BC => ÐBDA = 900. Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB. Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn. c) Theo giả thiết tam giác ABC cân tại A có AD là đường cao nên cũng là đường trung tuyến => D là trung điểm của BC. Theo trên ta có ÐBEC = 900 . Vậy tam giác BEC vuông tại E có ED là trung tuyến => DE = BC. d) Vì O là tâm đường tròn ngoại tiếp tam giác AHE nên O là trung điểm của AH => OA = OE => tam giác AOE cân tại O => ÐE1 = ÐA1 (1). Theo trên DE = BC => tam giác DBE cân tại D => ÐE3 = ÐB1 (2) Mà ÐB1 = ÐA1 ( vì cùng phụ với góc ACB) => ÐE1 = ÐE3 => ÐE1 + ÐE2 = ÐE2 + ÐE3 Mà ÐE1 + ÐE2 = ÐBEA = 900 => ÐE2 + ÐE3 = 900 = ÐOED => DE ^ OE tại E. Vậy DE là tiếp tuyến của đường tròn (O) tại E. e) Theo giả thiết AH = 6 Cm => OH = OE = 3 cm.; DH = 2 Cm => OD = 5 cm. Áp dụng định lí Pitago cho tam giác OED vuông tại E ta có ED2 = OD2 – OE2 ó ED2 = 52 – 32 ó ED = 4cm. 5 (vì x+y=1 nên: (x+y)2 = 1 ó x2 + y2 -1 = - 2xy) Để N đạt Min thì xy phải có GTLN ⇒Max xy = 1/4 ⇒N≥≥1 + 8 = 9 Vậy Min N = 9 khi x = y = 12
Tài liệu đính kèm: