Đề kiêm tra 45 phút năm 2015 – 2016 môn: Hình học 8 (tiết 25)

doc 7 trang Người đăng minhphuc19 Lượt xem 911Lượt tải 3 Download
Bạn đang xem tài liệu "Đề kiêm tra 45 phút năm 2015 – 2016 môn: Hình học 8 (tiết 25)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề kiêm tra 45 phút năm 2015 – 2016 môn: Hình học 8 (tiết 25)
ĐỀ KIÊM TRA 45’
NĂM HỌC 2015 – 2016
Môn: Hình học 8 (tiết 25)
Đề thi gồm : 01 trang
Câu 1: (2,0 điểm) 
Cây hoa ......... - thuốc tiên chữa bỏng
Dân ta ai mà chẳng biết cây . Có loại cây . hoa đỏ, có loại hoa vàng và cũng có loại hoa hồng rực, bông to. Mùa hè chỉ cần ngắt 1 đoạn dài 15cm giâm vào đất ẩm là cây sống và phát triển ngay. Nhà nào, ở đâu cũng có thể trồng hoa ., vừa làm cảnh, vừa làm thuốc chữa bỏng, như một vị thuốc tiên vậy. .. Cách làm như sau: Khi bị bỏng phải lập tức vặt ngay một nắm (nhiều hay ít tùy theo vết bỏng to hay nhỏ) cả cây, lá, hoa, đem giã nhỏ (hoặc vò nát cho chảy nước) và đắp ngay. Vừa đắp, vừa giở liên tục cho mát. Nắm lá ấy đã ấm lên, không có tác dụng làm mát nữa thì thay ngay nắm khác. Cứ thế tiến hành đến khi hết nóng rát là khỏi hẳn.
Điều đặc biệt là chỗ da bị bỏng lại hồi sinh bình thường như không có chuyện gì xảy ra. Nếu bỏng sâu như bỏng thép thì chỗ da bỏng sẽ khô đi, nhưng không phồng, không rát. Dần dần lớp da mới phát triển, lớp bỏng sẽ dần tự bong ra, không gây đau đớn. Vì thế dân ta đã truyền lại cho nhau mấy câu sau đây: 
Hỡi ai đi đông về tây
Thuốc tiên chữa bỏng là cây 
Nước sôi, lửa bỏng bất ngờ
Lấy cây . giã nhỏ đắp ngay
Vừa đắp vừa trở liền tay
Vết bỏng hết rát khỏi ngay tức thì
Hãy hoàn thiện các câu hỏi sau và chọn các chữ cái để ghép lại để biết được đó là cây gì?
a) Hình chữ nhật có mấy tâm đối xứng?
M. 1	N. 2	P. 3	Q. 4
b) Hình thoi có mấy trục đối xứng?
X. 1	U. 2	P. 3	Q. 4
c) Hình vuông có mấy trục đối xứng?
M. 1	Y. 2	W. 3	O. 4
d) Trong hình vuông, số cặp cạnh song song là:
 	H. 1	I. 2	K. 3	N. 4
e) Hình bình hành là tứ giác có mấy cặp cạnh song song? 
	G. 2	H. 3	C. 4	A. 1
g) Trong hình thang cân có mấy cặp cạnh bằng nhau?
	H. 2	I. 1	K. 3	N. 4
h) Đường trung bình của tam giác luôn song song với cạnh thứ ba và bằng ... cạnh đó:
	O. 1/2	P.2	Q. 3	R. 4
i) Cây hoa được nói trong nội dung trên là cây gì? 
Câu 2: (3,0 điểm). Cho hình thang ABCD (AB//CD) có AB = 6cm, CD = 10cm. Gọi E là trung điểm của AD, F là trung điểm của BC. Đường thẳng EF cắt AC ở K. 
a) Tính độ dài đoạn thẳng EF?
b) Tính độ dài đoạn thẳng EK?
Câu 3: ( 5,0 điểm). Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA. Kẻ đường cao AH.
a. Chứng minh tứ giác ADME là hình bình hành, HDEM là hình thang cân.
b. Để tứ giác ADME là hình vuông thì tam giác ABC cần có điều kiện gì?
c. Chứng minh ED là phân giác của góc AEH.
PHÒNG GD&ĐT CẨM GIÀNG
TRƯỜNG THCS CẨM VŨ
HƯỚNG DẪN CHẤM 
ĐỀ KIỂM TRA 45’
NĂM HỌC 2015 – 2016
Môn : Hình học 8
Bản hướng dẫn gồm 02 trang
Câu
(điểm)
Phần
Nội dung
Điểm
1
(2,0 điểm)
Câu
a
b
c
d
e
f
g
h
Đáp án đúng
M
U
O
I
G
I
O
Mười giờ
2,0
2
(3,0 điểm)
Vẽ hình, ghi GT và KL đúng
0,5
a
Ta có E là trung điểm của AD, F là trung điểm của BC
=> EF là đường trung bình của hình thang ABCD (đn)
=> EF = (AB + CD) : 2 = 8 (cm)
Vậy EF = 8cm
1,0
b
Ta có EF là đường trung bình của hình thang ABCD (cmt)
=> EF // DC (t/c đường trung bình)
=> KE // DC (vì K thuộc đoạn thẳng EF)
Mà E là trung điểm của AD nên K là trung điểm của AC ( t/c đường trung bình của tam giác)
=> EK là đường trung bình của tam giác ADC (đn)
=> EK = DC : 2 = 5(cm) 
Vậy EK = 5 (cm) 
1,0
0,5
3
(5,0 điểm)
Vẽ hình ghi gt, kl
0,5
a
Ta có D, M lần lượt là trung điểm của AB và BC (gt) 
DM là đường trung bình của ABC (đn) 	
DM // AC (t/c đường trung bình trong tam giác)
 DM // AE ( vì E AC) (1) 
Ta có M, E lần lượt là trung điểm của BC và AC (gt) ME là đường trung bình của ABC (đn) 	
 ME // AB (t/c đường trung bình trong tam giác) ME // AD (vì D AB) (2)
Từ (1) và (2) suy ra ADME là hình bình hành (dhnb ) 
2,0
Ta có MH//DE nên HDME là hình thang
Chứng minh tương tự ta có: DM=0,5AC
Tam giác AHC vuông tại H có HE là trung tuyến nên HE=0,5AC
Do đó DM=HE(tính chất trung tuyến của tg vuông)
Vậy HDME là hình thang cân
1,0
b
Vì ADME là hình bình hành (cmt) nên để tứ giác ADME là hình chữ nhật thìABC có = 900. 
HÌnh chữ nhật đó là hình vuông khi 
 AM là phân giác của ADE
Tam giác ABC cân tại A(vì đã có AM là trung tuyến) 
Vậy tam giác ABC vuông cân tại A thì HDME là hình vuông. 
0,5
0,5
c
 cân tại E nên góc EHC = góc C
Ta có DE//BC nên góc DEH = góc EHC, góc AED = góc C
Do đó góc AED = góc HED
Vậy ED là phân giác của góc AEH
0,5
ĐỀ KIÊM TRA 45’ (đề 2)
NĂM HỌC 2015 – 2016
Môn : Hình học
Đề thi gồm : 01 trang
Câu 1: (4,0 điểm) 
a) Nêu định nghĩa hình chữ nhật?
b) Cho hình vẽ. 
- Vì sao tứ giác ABCD là hình chữ nhật?
- Áp dụng tính chất hình chữ nhật tìm các đoạn thẳng bằng nhau, các đoạn thẳng song với nhau trong hình vẽ trên.
Câu 2: (3,0 điểm).Cho hình thang ABCD (AB//CD) có AB = 8cm, CD = 12cm. Gọi M là trung điểm của AD, N là trung điểm của BC. Đường thẳng MN cắt AC ở E. 
a) Tính độ dài đoạn thẳng MN?
b) Tính độ dài đoạn thẳng ME?
Câu 3: (3,0 điểm). Cho tam giác ABC. Gọi D, M, K theo thứ tự là trung điểm của AB, BC, CA.
a) Chứng minh tứ giác ADMK là hình bình hành.
b) Để tứ giác ADMK là hình chữ nhật thì tam giác ABC cần có điều kiện gì?
c) Khi M di chuyển trên cạnh BC thì trung điểm Q của AM di chuyển trên đường nào ?
HƯỚNG DẪN CHẤM (đề 2)
ĐỀ KIỂM TRA 45’
NĂM HỌC 2015 – 2016
Môn : Hình học 
Bản hướng dẫn gồm 02 trang
Câu
(điểm)
Phần
Nội dung
Điểm
1
(4,0 điểm)
a
- Định nghĩa hình chữ nhật: Hình chữ nhật là tứ giác có bốn góc vuông.
1,0
b
- Tứ giác ABCD là hình chữ nhật vì có ba góc vuông (dh)
- Các đoạn thẳng song song là: AB //DC; AD//BC
- Các đoạn thẳng bằng nhau là: AB = DC; AD = BC; AC = BD; IA = IB = IC = IB = ID
1,0
1,0
1,0
2
(3,0 điểm)
Vẽ hình, ghi GT và KL
0,5
a
Vì M là trung điểm của AD, N là trung điểm của BC nên MN là đường trung bình của hình thang ABCD
=> MN = (AB + CD) : 2 = 8 (cm)
Vậy MN = 8cm
1,0
b
- Ta có MN là đường trung bình của hình thang ABCD (cmt)
=> MN // DC (t/c đường trung bình)
=> ME //DC (vì E thuộc đoạn thẳng MN)
Mà M là trung điểm của AD nên E là trung điểm của AC ( t/c đường trung bình của tam giác)
=> ME là đường trung bình của tam giác ADC (đn)
=> ME = DC: 2 = 6 (cm)
Vậy ME = 6 (cm)
1,0
0,5
3
(3,0 điểm)
Vẽ hình, ghi gt, kl 
0,5
a
Ta có DM là đường trung bình của ABC 	
 DM // AC (t/c đường trung bình trong tam giác) DM// AK (1)
Ta có MK là đường trung bình của ACB 	
 MK // AB (t/c đường trung bình trong tam giác) MK // AD (2)
Từ (1) và (2) suy ra ADMK là hình bình hành (dhnb) 
1,0
b
Vì ADMK là hình bình hành (cmt) nên để tứ giác ADMK là hình chữ nhật thìABC có = 900. 
0,5
c
Từ A kẻ AH vuông góc với BC tại H, từ Q kẻ QI vuông góc với BC tại I
Ta có IQ// AH (vì cùng vuông góc với BC)
Trong tam giác AMH có Q là trung điểm của AM, IQ//AH nên I là trung điểm HM
=> QI là đường trung bình của tam giác AHM (Đn)
=> QI = AH : 2 (tc đường tb)
 Mà tam giác ABC cố định nên độ dài đường cao AH không đổi suy ra độ dài đoạn QI không đổi
Khi M B thì QD, khi M C thì Q K
Vậy khi M di chuyển trên cạnh BC thì trung điểm Q của AM di chuyển trên đoạn DK.
0,5
0,5

Tài liệu đính kèm:

  • docKiem_Tra_Hinh_Hoc_Tiet_25.doc