ĐỀ CƯƠNG TOÁN 10 HK I PHẦN I: ĐẠI SỐ CHƯƠNG I: TẬP HỢP – MỆNH ĐỀ Bài 1. Liệt kê các phần tử của các tập hợp sau: 1/ 2/ 3/ 4/ Bài 2. Tìm 1/ A là tập hợp các số tự nhiên lẻ không lớn hơn 10; 2/ 3/ 4/ 5/ CHƯƠNG II: HÀM SỐ BẬC NHẤT VÀ BẬC HAI Bài 1. Tìm tập xác định của các hàm số 1/ 2/ 3/ 4/ 5/ 6/ 7/ 8/ Bài 2. Xác định để đồ thị hàm số sau: 1/ Đi qua hai điểm và 2/ Đi qua và song song với đường thẳng 3/ Đi qua và có hệ số góc bằng 2 4/ Đi qua và vuông góc với đường thẳng 5/ Cắt trục hoành tại điểm có hoành độ và đi qua 6/ Cắt trục tung tại điểm có tung độ là – 2 và đi qua Bài 3. 1/ Viết phương trình đường thẳng đi qua và song song với đường thẳng 2/ Viết phương trình đường thẳng đi qua và vuông góc với đường thẳng Bài 4. Xét sự biến thiên và vẽ đồ thị các hàm số sau: 1/ 2/ 3/ 4/ Bài 5. Tìm tọa độ giao điểm của các đồ thị hàm số sau: 1/ và 2/ và 3/ và 4/ và Bài 6. Xác định parabol biết parabol đó: 1/ Đi qua hai điểm và 2/ Có đỉnh 3/ Qua và có trục đối xứng có phương trình là 4/ Qua có tung độ đỉnh là 0 Bài 7. Tìm parabol , biết rằng parabol đó: 1/ Đi qua hai điểm và 2/ Có đỉnh 3/ Có hoành độ đỉnh là – 3 và đi qua điểm 4/ Có trục đối xứng là đường thẳng và cắt trục hoành tại điểm Bài 8. Xác định parabol , biết rằng parabol đó: 1/ Có trục đối xứng , cắt trục tung tại điểm và đi qua điểm 2/ Có đỉnh và đi qua 3/ Đi qua và tiếp xúc với trục hoành tại 4/ Có đỉnh và cắt trục hoành tại điểm có hoành độ là 1 5/ Đi qua ba điểm CHƯƠNG III: PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH Bài 1. Giải các phương trình sau: 1/ 2/ 3/ 4/ 5/ 6/ 7/ 8/ 9/ 10/ 11/ 12/ 13/ 14/ Bài 2. Giải các phương trình sau: 1/ 2/ 3/ 4/ 5/ 6/ 7/ 8/ 9/ 10/ Bài 3. Giải các phương trình sau: 1/ 2/ 3/ 4/ 5/ 6/ 7/ 8/ 9/ 10/ 11/ 12/ Bài 4. Giải các phương trình sau: 1/ 2/ 3/ 4/ Bài 5. Cho phương trình . Định m để phương trình: 1/ Có 2 nghiệm phân biệt 2/ Có nghiệm (hay có 2 nghiệm) 3/ Có nghiệm kép và tìm nghiệm kép đó 4/ Có một nghiệm bằng – 1 và tính nghiệm còn lại Bài 6. Cho phương trình 1/ Giải phương trình với 2/ Tìm m để phương trình có nghiệm kép. Tìm nghiệm kép đó 3/ Tìm m để phương trình có hai nghiệm trái dấu 4/ Tìm m để phương trình có hai nghiệm thỏa mãn Bài 7. 1/ Chứng minh rằng với mọi ta có 2/ Chứng minh rằng: 3/ Tìm giá trị nhỏ nhất của hàm số: với mọi 4/ Với hãy tìm giá trị nhỏ nhất của biểu thức: Bài 8. 1/ Chứng minh rằng: 2/ Tìm giá trị lớn nhất của hàm số : với mọi 3/ Với mọi hãy tìm giá trị lớn nhất của biểu thức: PHẦN 2: HÌNH HỌC CHƯƠNG I: VÉCTƠ Bài 1. Cho 6 điểm phân biệt chứng minh: 1/ 2/ 3/ 4/ Bài 2. Cho 3 điểm 1/ Chứng minh A, B, C không thẳng hàng 2/ Tìm tọa độ trung điểm I của đoạn AB 3/ Tìm tọa độ trọng tâm G của tam giác ABC 4/ Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành 5/ Tìm tọa độ điểm N sao cho B là trung điểm của đoạn AN 6/ Tìm tọa độ các điểm H, Q, K sao cho C là trọng tâm của tam giác ABH, B là trọng tâm của tam giác ACQ, A là trọng tâm của tam giác BCK 7/ Tìm tọa độ điểm T sao cho hai điểm A và T đối xứng nhau qua B, qua C 8/ Tìm tọa độ điểm U sao cho Bài 3. Cho tam giác ABC có lần lượt là trung điểm của các cạnh BC, CA, AB. Tìm tọa độ A, B, C Bài 4. Trong hệ trục tọa độ cho hai điểm . Tìm tọa độ: 1/ Điểm M thuộc Ox sao cho A, B, M thẳng hàng 2/ Điểm N thuộc Oy sao cho A, B, N thẳng hang CHƯƠNG II: TÍCH VÔ HƯỚNG CỦA HAI VECTƠ VÀ ỨNG DỤNG Bài 1. Cho tam giác ABC vuông tại A, AB = a, BC = 2a. Tính các tích vô hướng: 1/ 2/ 3/ Bài 2. Cho tam giác ABC đều cạnh bằng a. Tính các tích vô hướng: 1/ 2/ 3/ Bài 3. Cho tam giác ABC đều cạnh a. Tính Bài 4. Cho hình vuông cạnh a, I là trung điểm AI. Tính Bài 5. Cho tam giác ABC biết AB = 2; AC = 3; góc A bằng 1200. Tính và tính độ dài BC và tính độ dài trung tuyến AM của tam giác ABC Bài 6. Cho tam giác ABC có 1/ Tính chu vi và nhận dạng tam giác ABC 2/ Tìm tọa độ điểm M biết Bài 7. Cho tam giác ABC có 1/ Tính . Chứng minh tam giác ABC vuông tại A 2/ Tính chu vi, diện tích tam giác ABC 3/ Tìm tọa độ điểm M thuộc trục tung để ba điểm B, M, A thẳng hang 4/ Tìm tọa độ điểm N trên Ox để tam giác ANC cân tại N 5/ Tìm tọa độ điểm D để ABCD là hình bình hành và tìm tâm I của hình bình hành 6/ Tìm tọa độ điểm M sao cho ---Chúc các em thi tốt---
Tài liệu đính kèm: