Đại số và giải tích 11 - Bài tập ôn chương IV

doc 6 trang Người đăng minhphuc19 Lượt xem 874Lượt tải 1 Download
Bạn đang xem tài liệu "Đại số và giải tích 11 - Bài tập ôn chương IV", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đại số và giải tích 11 - Bài tập ôn chương IV
BÀI TẬP ÔN CHƯƠNG IV
GIỚI HẠN CỦA DÃY SỐ
1) 2) 3) 
4) 5) 6) 
7) 8) 9) 
 10) 11) 12) 
 13) 14) 15) 
 16) 17) 18) 
 19) 20) 21) 
 22) 24) 25) 
 26) 27) 28) 
 29) Cho dãy số (un) thỏa mãn các điều kiện sau:
	a) Tìm L= b) Tìm L=
 c) Tìm L= d) Tìm L= 
	30) Tính Tổng 
	a) 
	b) 
GIỚI HẠN HÀM SỐ
1) 2) 3) 
4) 5) 6) 
7) 8) 9) 
10) 11) 12) 
13) 14) 15) 
16) 17) 18) 
19) 20) 21) 
22) 23) 24) 
25) 26) 27) 
28) ( đặt ) 29) 30) 
31) 32) 33) 
 34) 35) 36) 
	37) 38) 39) 
	40) 41) 42) 
	43) 44) 45) 
	46) 	 47) 48) 
III) HÀM SỐ LIÊN TỤC
Xét tính liên tục của các hàm số sau:
a) Nếu b) Nếu 
c) Nếu 	 c) Nếu 
2) Tìm m để hàm số sau liên tục :
a) Nếu liên tục tại x=2 b) Nếu liên tục trên
Chứng minh rằng các phương trình sau luôn có nghiệm:
a) 
b) 
c) 
d) (có ít nhất hai nghiệm)
2) Phương pháp đổi biến
Dạng 1: Tìm 
Đặt khi khi đó vậy 
 Dạng 2: Cho 
 Tìm Ta sử dụng phương pháp thêm bớt 
 Đặt Khi vậy 
 Dạng 3: 
I. Chọn phương án trả lời đúng nhất và điền vào bảng trên trong các câu sau.
Câu 1: Giới hạn của dãy số sau đây bằng bao nhiêu: :A. 3	B. 	C. 0	D. 
Câu 2: Giới hạn của dãy số sau đây bằng bao nhiêu: :A. 1	B. 	C. 0	D. 
Câu 3: Tìm ta được: A. 	 B. 	 C. 	D. 
Câu 4: Giới hạn của hàm số sau đây bằng bao nhiêu: :A. 24	B. 0	C. D. 5.
Câu 5. Giới hạn của hàm số sau đây bằng bao nhiêu: : A. 	B. 2	 C. 	 D.8
Câu6: Giới hạn của hàm số sau đây bằng bao nhiêu: 
A. 0	B. 	C. 1	D. 2	
Câu7. Cho hàm số . Xét phương trình: f(x) = 0 (1) trong các mệnh đề sau, tìm mệnh đề sai?
A. (1) có nghiệm trên khoảng (-1; 1)	B. (1) có nghiệm trên khoảng (0; 1)
C. (1) có nghiệm trên R	D. Vô nghiệm
Câu 8: Trong các phương pháp tìm giới hạn dưới đây, phương pháp nào là phương pháp thích hợp? A. Nhân phân thức với biểu thức liên hợp của mẫu là (x -1) .
B. Chia tử và mẫu cho C. Phân tích nhân tử ở tử số rồi rút gọn D. Chia tử và mẫu cho 	
Câu 9: cho hàm số: để f(x) liên tục trên toàn trục số thì a bằng?
A. -2	B. -1	C. 0	D. 1	
Câu 10 . Dãy số nào saucó giới hạn bằng ?
A. B. C. D. 
II. Tư luận	
Câu 11nếu x ¹ 1
. Tìm m để hàm số sau liên tục tại điểm x = 1: 
nếu x = 1
Câu 12. Chứng minh rằng phương trình sau có ít nhất hai nghiệm:
C©u 1 : 
Giới hạn của hàm số sau đây bằng bao nhiêu: 
A.
5a4
B.
3a4
C.
2a2
D.
4a3
C©u 2 : 
Tính 
A.
1
B.
-1/2
C.
-2
D.
3/2
C©u 3 : 
Khẳng định nào sau đây là đúng?
A.
B.
C.
D.
C©u 4 : 
Trong các giới hạn sau, giới hạn nào không tồn tại
A.
B.
C.
D.
C©u 5 : 
Tính 
A.
1
B.
2
C.
0
D.
3
C©u 6 : 
Phương pháp nào sau đây thường được sử dụng để khử dạng giới hạn vô định của phân thức
A.
Phân tích tử và mẫu thành nhân tử rồi rút gọn
B.
Nhân biểu thức liên hợp
C.
Chia cả tử và mẫu cho biến số có bậc thấp nhất
D.
Sử dụng định nghĩa
C©u 7 : 
Hàm số có bao nhiêu điểm gián đoạn
A.
1
B.
3
C.
2
D.
4	
C©u 8 : 
Tính 
A.
B.
2
C.
D.
-2
C©u 9 : 
Với k là số nguyên dương. Kết quả của giới hạn là
A.
x
B.
C.
0
D.
C©u 10 : 
Tính 
A.
2
B.
1
C.
1/2
D.
-1/2
C©u 11 : 
Tính 
A.
-8
B.
8
C.
-6
D.
6
C©u 12 : 
Khẳng định nào sau đây là đúng?
A.
B.
C.
D.
C©u 13 : 
Giới hạn nào dưới đây có kết quả bằng 3
A.
B.
C.
D.
Cả ba hàm số trên
C©u 14 : 
Tính 
A.
B.
2
C.
D.
1
C©u 15 : 
Giới hạn của hàm số nào dưới đây có kết quả bằng 1?
A.
B.
C.
D.
C©u 16 : 
Một học sinh bảo rằng phương trình x4-x-2=0 (1), có nghiệm , nằm trong khoảng (0;2)
Và lập luận như sau, Hỏi phần lập luận đó sai ở bước nào?
A.
B.
hàm số liên tục trên 
C.
 nên (1) có ít nhất một nghiệm 
 nên (1) có ít nhất một nghiệm 
D.
Vậy (1) có ít nhất 2 nghiệm , nằm trong khoảng (0;2)
C©u 17 : 
Tính 
A.
-1
B.
1
C.
-2
D.
2
C©u 18 : 
Cho hàm số với giá trị nào của m thì hàm số sau liên tục tại x=2
A.
m=1/2	
B.
m=1/8
C.
m=1/16
D.
m=1/4
C©u 19 : 
Hàm số chỉ gián đoạn tại các điểm
A.
x=1
B.
x=-2	
C.
Đáp án khác
D.
x=-2 và x=1
C©u 20 : 
Cho hàm số . Khẳng định nào sau đây là đúng
A.
Hàm số chỉ có giới hạn trái tại điểm 
B.
Hàm số chỉ có giới hạn phải tại điểm 
C.
Hàm số có giới hạn tại điểm 
D.
Hàm số có giới hạn trái và giới hạn phải bằng nhau
C©u 21 : 
Tính 
A.
0
B.
2
C.
3
D.
1
C©u 22 : 
Cho phương trình msin2x + sinx – cosx =0 (1), m là tham số. Mệnh đề nào sau đây đúng?
I. Trong khoảng , phương trình (1) không có nghiệm nào cả
II.- Trong khoảng , phương trình (1) có nghiệm
III. x = 0 là một nghiệm của (1).
A.
Chỉ I	
B.
Chỉ II và III
C.
Chỉ I và III
D.
Chỉ II
C©u 23 : 
Xác định 
A.
B.
1
C.
D.
-1
C©u 24 : 
Hàm nào trong các hàm sau có giới hạn tại điểm 
A.
B.
C.
D.
C©u 25 : 
Kết quả của giới hạn (với k nguyên dương) là
A.
x
B.
0
C.
D.

Tài liệu đính kèm:

  • docon_tap_lop_11.doc