COÂNG THÖÙC ÑAÙNG NHÔÙ A . Caùc coâng thöùc cô baûn thöôøng duøng ñeå giaûi baøi toaùn löôïng giaùc: 1. tanx = ( cosx ≠ 0 hay x ≠ ) 2. cotx = (sinx ≠ 0 hay x ≠ k) 3. sin2x + cos2x = 1 4. tanx.cotx = 1 5. = 1 + tan2x " cos2 x = = 6. = 1 + cot2x " sin2x = 7. Coâng thöùc nhaân ñoâi: cos2x = cos2x – sin2x = 2cos2x – 1 = 1 – 2sin2x sin2x = 2sinx.cosx tan2x = 8. Coâng thöùc nhaân 3: sin3x = 3sinx – 4sin3x cos3x = - 3cosx + 4cos3x tan3x = 9. Coâng thöùc haï baäc: sin2x = cos2x = cos3x = sin3x = 10. Coâng thöùc tính theo haøm : t = tan Ñònh lí haøm soá Cosin: A sinx = a2 = b2 + c2 – 2bccosA c b C cosx = b2 = a2 + c2 – 2accosB a B tgx = c2 = a2 + b2 – 2abcosC 11. Coâng thöùc coäng: Ñònh lí sin: sin( x + y ) = sinx.cosy + cosx.siny Dieän tích: =acsinB =absinC sin( x – y ) = sinx.cosy – cosx.siny S = =aha cos(x + y ) = cosx.cosy – sinx.siny - cosx = sin( x - ) cos(x – y ) = cosx.cosy + sinx.siny - cosx = cos(p - x) tan( x + y ) = - sinx = sin(-x) tan(x – y ) = - sinx = cos(x + ) 12. Coâng thöùc bieán ñoåi tích thaønh toång: sinx = cos( - x) cosx.cosy = [cos( x – y ) + cos(x + y)] cosx = sin( - x) sinx.siny = [cos( x – y ) – cos(x + y)] sinx = ± 1 Û x = ± + k2p sinx.cosy = [sin( x – y ) + sin(x + y)] sinx = 0 Û x = kp 13. Coâng thöùc bieán ñoåi toång thaønh tích: cox = 0 Û x = + kp cosx + cosy = 2cos cosx = 1 Û x = k2p cosx – cosy = - 2 cosx = -1 Û x = p + k2p sinx + siny = 2 tanx = 0 Û x = kp sinx – siny = 2 tanx = ± 1 Û x = ± + kp 14. Caùc phöông trình löôïng giaùc cô baûn: cotx = 0 Û x = + kp x = y + k2p cotx = ± 1 Û x = ± + kp sinx = sin y 1 + sin2x = x = p - y + k2p 1 – sin2x = cosx = cosy x = ± y + k2 1 + cos2x = 2 tanx = tany x = y + k (nhôù ñieàu kieän cosx ¹ 0) 1 – cos2x = 2 cotx = coty Û x = y + kp (nhôù ñieàu kieän sinx ¹ 0) Daïng cuûa phöông trình Caùch giaûi Phöông trình baäc nhaát hoaëc baäc hai ñoái vôùi f(x), trong ñoù f(x) laø moät bieåu thöùc löôïng giaùc naøo ñoù Ñaët aån phuï t = f(x) Phöông trình baäc nhaát ñoái vôùi sinx vaø cosx: Asinx + Bcosx = C ( ñk: A2+ B2 ³ C2 ) Ñaët z = , chia 2 veá cho z, ñöa veà daïng sin ( x ± ) = sinu hoaëc cos(x Phöông trình thuaàn nhaát baäc hai ñoái vôùi sinx vaø cosx coù daïng nhö sau: Asin2x + Bsinx.cosx + Ccos2x = 0 Coù 2 caùch giaûi: Caùch 1: Haï baäc roài ñöa veà daïng Asinx + Bcosx = C Caùch 2: B1: Thöû xem cosx = 0 coù phaûi laø nghieäm cuûa phöông trình khoâng B2: Chia hai veá cho cos2x, roài giaûi bình thöôøng Phöông trình ñoái xöùng ñoái vôùi sinx vaø cosx coù daïng: A(sinx ± cosx) + Bsinx.cosx + C = 0 Ñaët t = sinx ± cosx ñeå giûaûi, ñk t Neáu t = sinx + cosx Þ sinxcosx = Neáu t = sinx – cosx Þ sinxcosx = Phöông trình khaùc, khoâng thuoäc caùc daïng treân Baèng phöông phaùp bieán ñoåi ñeå ñöa veà daïng cô baûn Löu yù: 1/ sinx + cosx = sin( x + ) = cos(x - ) 2/ sinx – cosx = sin( x - ) = - 3/ sin4x + cos4x = 1 - sin22x = (coâng thöùc giaûi nhanh) + = + = + = =1 - sin22x = 4/ sin6x + cos6x = 1 - sin22x = (coâng thöùc giaûi nhanh) + = + = + = = 1-sin22x = B. Baøi taäp: Baøi 1: Phöông trình baäc nhaát hoaëc baäc hai ñoái vôùi f(x) a/ sin(3x - b/ sin(3x – ) = -1 c/ = 1 d/ cos(3x – 150 ) = -cos1350 e/ tan(2x + ) = tan f/ cot( 450 – x) = tan g/ sin3x – cos2x = 0 h/ sin(x + i/ sin(3x - j/ cos k/ cos2x = - sin (x + ) l/ sin m/ 3sin22x + 7cos2x – 3 = 0 n/ 6cos2x + 5sinx – 7 = 0 0/ cos2x – 5sinx – 3 = 0 p/ cos2x + cosx +1 = 0 q/ 6sin23x + cos12x = 1 r/ 4sin4x + 12cos2x = 7 s/ 3cot2(x + t/ tan2(2x - u/ 7tanx – 4cotx = 12 v/ cot2x + ( - 1)cotx - = 0 y/ 3sin2x + 2cos2x = 3 w/ 4sinx – 3cosx = 5 x/ 3cosx + 2sinx = z/ 2sin2x + 3cos2x = sin14x Baøi 2: Phöông trình thuaàn nhaát baäc hai ñoái vôùi sinx vaø cosx coù daïng nhö sau: Asin2x + Bsinx.cosx + Ccos2x = 0 (ñk: A2 + B2 + C2 ≠ 0) a/ 2sin2x + ( 1 - )sinx.cosx + ( 1 - )cos2x = 1 b/ 4sin2x + 3sin2x – 2cos2x = 4 c/ sin3x + cos3x + 2cosx = 0 d/ = 0 e/ = 3(cos2x + sinx.cosx) f/ = 3sinx * (2sinx – 1)(2cos2x + 2sinx + m) = 3 - 4. Tìm m ñeå phöông trình coù 2 nghieäm thoaû ñieàu kieän 0 £ x£p Baøi 3: Phöông trình ñoái xöùng ñoái vôùi sinx vaø cosx coù daïng: A(sinx ± cosx) + Bsinx.cosx + C = 0 a/ 3(sinx + cosx) + 2sin2x + 3 = 0 b/ sinx – cosx + 4sinx.cosx + 1 = 0 c/ sin2x – 12(sinx – cosx) + 12 = 0 d/ sin3x + cos3x = 0 e/ sinx.cosx - (sinx + cosx) + 1 = 0 f/ sin3x + cos3x = Baøi 4: Phöông trình ñöa veà daïng tích: a/ sin5x + sinx – sin3x = 0 b/ cos2x – cos6x = sin3x + sin5x c/ (sinx – cosx)2 – ( + 1 )(sinx – cosx) + = 0 d/ tan + sinx = 2 e/ sinx + sin2x + sin3x = (cosx + cos2x + cos3x) f/ sinx + sin2x + sin3x = 4cos g/ tanx + tan2x= tan3x Baøi 5: Duøng coâng thöùc haï baäc a/ sin4x + cos4x = b/ sin6x + cos6x = sin4x + cos4x c/ sin4x – sin2x – 2 = 0 d/ sin4x + cos4x – cos2x = 1 - e/ tan2x + cot2x – 2 = 0 Baøi 6: Caùc daïng phöông trình khaùc a/ sin2x – 2sinxcosx – 3cos2x = 0 b/ 6sin2x + sinx.cosx – cos2x = 2 c/ sin2x – 2sin2x = 2cos2x d/ 2sin22x – 3sin2x.cos2x + cos22x = 2 e/ 4sinx.cos(x – ) + 4sin( + x).cosx + 2sin().cos( + x) = 1 f/ 2sin3x + 4cos3x = 3sinx g/ 3 + 3 h/ sinx.sin7x = sin3x.sin5x i/ sin5x.cos3x = sin9x.cos7x j/ cosx.cos3x – sin2x.sin6x – sin4x.sin6x = 0 k/ sin4x.sin5x + sin4x.sin3x – sin2x.sinx = 0 l/ sin5x + sin3x = sin4x m/ sinx + sin2x + sin3x = 0 n/ cosx + cos3x + 2cos5x = 0 o/ cos22x + 3cos18x + 3cos14x + cos10x = 0 p/ sin2x + sin22x + sin23x = q/ sin23x + sin24x = sin25x + sin26x r/ sin22x + sin24x = sin26x s/ cos2x + cos22x + cos23x + cos24x = 2 t/ cos23x + cos24x + cos25x = u/ 8cos4x = 1 + cos4x v/ sin4x + cos4x = cos4x w/ 3cos22x – 3sin2x + cos2x = 0 x/ tan(x + + cot( y/ tan z/ tan z1/ sin2x + 2cotx = 3 z2/ tanx = 1 – cos2x z3/ tan( x – 150).cot(x + 150) = z4/ sin2x + 2cos2x = 1 + sinx – 4cosx z5/ 3sin4x + 5cos4x – 3 = 0 z6/ (2sinx – cosx).(1 + cosx) = sin2x z7/ 1 + sinx.cos2x = sinx + cos2x z8/ sin2x.tanx + cos2x.cotx – sin2x = 1 + tanx + cotx z9/ tancosx – sinx.cos3x = z10/ sin2x + sinx.cos4x + cos24x = z11/ (2sinx – 1).(2sin2x + 1) = 3 – 4cos2x z12/ cos z13/ 6tan z14/ 3cos2x + 2(1 + z15/ 2(sinx + cosx).cosx = 3 + cos2x z16/ cos2x - sin2x = 1 + sin2x z17/ 4sinx.cosx + 4cos2x – 2sin2x = z18/ sin()cot3x + sin( + 2x) - cos5x = 0 z19/ tan2x + cos4x = 0 z20/ 9sinx + 6cosx – 3sin2x + cos2x = 8 z21/ sin4(x + ) = + cos2x – cos4x z22/ (2sinx + 1).(3cos4x + 2sinx – 4) + 4cos2x = 3 z23/ sin3(x + ) = 2sinx z24/ 2sinx + cotx = 2sin2x + 1 z25/ tan2x(1 – sin3x) + cos3x – 1 = 0 z26/ 1 + cot2x = z27/ 6sinx – 2cos2x =
Tài liệu đính kèm: