BÀI TOÁN VỀ TÍNH TỔNG CỦA DÃY SỐ CÁCH ĐỀU BÀI TOÁN TÍNH TỔNG CỦA DÃY SỐ CÓ QUY LUẬT CÁCH ĐỀU. Muốn tính tổng của một dãy số có quy luật cách đều chúng ta thường hướng dẫn học sinh tính theo các bước như sau: Bước 1: Tính số số hạng có trong dãy: (Số hạng lớn nhất của dãy - số hạng bé nhất của dãy) : khoảng cách giữa hai số hạng liên tiếp trong dãy + 1 Bước 2: Tính tổng của dãy: (Số hạng lớn nhất của dãy + số hạng bé nhất của dãy) x số số hạng có trong dãy : 2 Trong quá trình BDHSG ta thấy các dạng bài liên quan đến bài toán tính tổng của dãy số có quy luật cách đều rất đa dạng và phong phú, đòi hỏi học sinh phải vận dụng một cách linh hoạt 2 bước giải trên. Sau đây tôi xin giới thiệu một vài ví dụ cho thấy sự vận dụng kiến thức cơ bản của dạng toán một cách linh hoạt trong từng bài toán cụ thể. Ví dụ 1: Tính giá trị của A biết: A = 1 + 2 + 3 + 4 + ........................... + 2014. Phân tích: Đây là dạng bài cơ bản trong dạng bài tính tổng của dãy có quy luật cách đều, chúng ta hướng dẫn học sinh tính giá trị của A theo 2 bước cơ bản ở trên. Bài giải Dãy số trên có số số hạng là: (2014 – 1) : 1 + 1 = 2014 (số hạng) Giá trị của A là: (2014 + 1) x 2014 : 2 = 2029105 Đáp số: 2029105 Ví dụ 2: Cho dãy số: 2; 4; 6; 8; 10; 12; ............... Tìm số hạng thứ 2014 của dãy số trên ? Phân tích: Từ bước 1 học sinh sẽ tìm ra cách tìm số hạng lớn nhất trong dãy là: Số hạng lớn nhất = (Số số hạng trong dãy – 1) x khoảng cách giữa hai số hạng liên tiếp+ số hạng bé nhất trong dãy. Bài giải Số hạng thứ 2014 của dãy số trên là: (2014 – 1) x 2 + 2 = 4028 Đáp số:4028 Ví dụ 3: Tính tổng 50 số lẻ liên tiếp biết số lẻ lớn nhất trong dãy đó là 2013 ? Phân tích: Từ bước 1 học sinh sẽ tìm ra cách tìm số hạng bé nhất trong dãy là: Số hạng bé nhất = Số hạng lớn nhất - (Số số hạng trong dãy – 1) x khoảng cách giữa hai số hạng liên tiếp. Từ đó học sinh sẽ dễ dàng tính được tổng theo yêu cầu của bài toán. Bài giải Số hạng bé nhất trong dãy số đó là: 2013 - (50 – 1) x 2 = 1915 Tổng của 50 số lẻ cần tìm là (2013 + 1915) x 50 : 2 = 98200 Đáp số: 98200 Ví dụ 4: Một dãy phố có 15 nhà. Số nhà của 15 nhà đó được đánh là các số lẻ liên tiếp, biết tổng của 15 số nhà của dãy phố đó bằng 915. Hãy cho biết số nhà đầu tiên của dãy phố đó là số nào ? Phân tích: Bài toán cho chúng ta biết số số hạng là15, khoảng cách của 2 số hạng liên tiếp trong dãy là 2 và tổng của dãy số trên là 915. Từ bước 1 và 2 học sinh sẽ tính được hiệu và tổng của số nhà đầu và số nhà cuối. Từ đó ta hướng dẫn học sinh chuyển bài toán về dạng tìm số bé biết tổng và hiêu của hai số đó. Bài giải Hiệu giữa số nhà cuối và số nhà đầu là: (15 - 1) x 2 = 28 Tổng của số nhà cuối và số nhà đầu là: 915 x 2 : 15 = 122 Số nhà đầu tiên trong dãy phố đó là: (122 - 28) : 2 = 47 Đáp số: 47 Một số bài tự luyện: Bài 1: Cho dãy số: 1; 4; 7; 10; ............................; 2014. a, Tính tổng của dãy số trên ? b, Tìm số hạng thứ 99 của dãy ? c, Số hạng 1995 có thuộc dãy số trên không ? Vì sao ? Bài 2: Tìm TBC các số chẵn có 3 chữ số ? Bài 3: Tính tổng 60 số chẵn liên tiếp biết số chẵn lớn nhất trong dãy đó là 2010 ? Bài 4: Tính tổng 2014 số lẻ liên tiếp bắt đầu bằng số 1 ? Bài 5:Tính tổng: 1 + 5+ 9 + 13 +....................... biết tổng trên có 100 số hạng ? Bài 6: Một dãy phố có 20 nhà. Số nhà của 20 nhà đó được đánh là các số chẵn liên tiếp, biết tổng của 20 số nhà của dãy phố đó bằng 2000. Hãy cho biết số nhà cuối cùng trong dãy phố đó là số nào ? Các bạn ạ ! Theo tôi trong quá trình dạy học chúng ta không nên cho học sinh một con đường mòn duy nhất mà hãy cho các em một định hướng về con đường đó để các em có thể tự hình thành và tìm cho mình con đường đi đúng và phù hợp nhất. Hãy giúp các em lấy cái bất biến để ứng cái vạn biến. Đó là điều mà chúng ta nên làm trong quá trình dạy học. Mong các đ/c đồng nghiệp thường xuyên trao đổi kinh nghiệm dạy học của mình trên diễn đàn này để chúng ta có nhiều cơ hội giao lưu, học hỏi lẫn nhau nhiều hơn và ngày một tiến bộ hơn về trình độ cũng như năng lực BDHSG. Dạng 1. QUY LUẬT VIẾT DÃY SỐ: * Kiến thức cần lưu ý (cách giải): Trước hết ta cần xác định quy luật của dãy số. Những quy luật thường gặp là: + Mỗi số hạng (kể từ số hạng thứ hai) bằng số hạng đứng trước nó cộng (hoặc trừ) với 1 số tự nhiên d; + Mỗi số hạng (kể từ số hạng thứ hai) bằng số hạng đứng trước nó nhân (hoặc chia) với 1 số tự nhiên q khác 0; + Mỗi số hạng (kể từ số hạng thứ ba) bằng tổng hai số hạng đứng trước nó; + Mỗi số hạng (kể từ số hạng thứ tư) bằng tổng của số hạng đứng trước nó cộng với số tự nhiên d cộng với số thứ tự của số hạng ấy; + Số hạng đứng sau bằng số hạng đứng trước nhân với số thứ tự; v . . . v 1. Loại 1: Dãy số cách đều: Bài 1: Viết tiếp 3 số: a, 5, 10, 15, ... b, 3, 7, 11, ... Giải: a, Vì: 10 – 5 = 5 15 – 10 = 5 Dãy số trên 2 số hạng liền nhau hơn kém nhau 5 đơn vị. Vậy 3 số tiếp theo là: 15 + 5 = 20 20 + 5 = 25 25 + 5 = 30 Dãy số mới là: 5, 10, 15, 20, 25, 30. b, 7 – 3 = 4 11 – 7 = 4 Dãy số trên 2 số hạng liền nhau hơn kém nhau 4 đơn vị. Vậy 3 số tiếp theo là: 11 + 4 = 15 15 + 4 = 19 19 + 4 = 23 Dãy số mới là: 3, 7, 11, 15, 19, 23. Dãy số cách đều thì hiệu của mỗi số hạng với số liền trước luôn bằng nhau 1. Loại 2: Dãy số khác: Bài 1: Viết tiếp 3 số hạng vào dãy số sau: a, 1, 3, 4, 7, 11, 18, ... b, 0, 2, 4, 6, 12, 22, ... c, 0, 3, 7, 12, ... d, 1, 2, 6, 24, ... Giải: a, Ta nhận xét: 4 = 1 + 3 7 = 3 + 4 11 = 4 + 7 18 = 7 + 11 ... Từ đó rút ra quy luật của dãy số là: Mỗi số hạng (Kể từ số hạng thứ ba) bằng tổng của hai số hạng đứng trước nó. Viết tiếp ba số hạng, ta được dãy số sau: 1, 3, 4, 7, 11, 18, 29, 47, 76,... b, Tương tự bài a, ta tìm ra quy luật của dãy số là: Mỗi số hạng (kể từ số hạng thứ tư) bằng tổng của 3 số hạng đứng trước nó. Viét tiếp ba số hạng, ta được dãy số sau. 0, 2, 4, 6, 12, 22, 40, 74, 136, ... c, ta nhận xét: Số hạng thứ hai là: 3 = 0 + 1 + 2 Số hạng thứ ba là: 7 = 3 + 1 + 3 Số hạng thứ tư là: 12 = 7 + 1 + 4 . . . Từ đó rút ra quy luật của dãy là: Mỗi số hạng (kể từ số hạng thứ hai) bằng tổng của số hạng đứng trước nó cộng với 1 và cộng với số thứ tự của số hạng ấy. Viết tiếp ba số hạng ta được dãy số sau. 0, 3, 7, 12, 18, 25, 33, ... d, Ta nhận xét: Số hạng thứ hai là 2 = 1 x 2 Số hạng thứ ba là 6 = 2 x 3 số hạng thứ tư là 24 = 6 x 4 . . . Từ đó rút ra quy luật của dãy số là: Mỗi số hạng (kể từ số hạng thứ hai) bằng tích của số hạng đứng liền trước nó nhân với số thứ tự của số hạng ấy. Viết tiếp ba số hạng ta được dãy số sau: 1, 2, 6, 24, 120, 720, 5040, ... Bài 2: Tìm số hạng đầu tiên của các dãy số sau: a, . . ., 17, 19, 21 b, . . . , 64, 81, 100 Biết rằng mỗi dãy có 10 số hạng. Giải: a, Ta nhận xét: Số hạng thứ mười là 21 = 2 x 10 + 1 Số hạng thứ chín là: 19 = 2 x 9 + 1 Số hạng thứ tám là: 17 = 2 x 8 + 1 . . . Từ đó suy ra quy luật của dãy số trên là: Mỗi số hạng của dãy bằng 2 x thứ tự của số hạng trong dãy rồi cộng với 1. Vậy số hạng đầu tiên của dãy là 2 x 1 + 1 = 3 b, Tương tự như trên ta rút ra quy luật của dãy là: Mỗi số hạng bằng số thứ tự nhân số thứ tự của số hạng đó. Vậy số hạng đầu tiên của dãy là: 1 x 1 = 1 Bài 3: Lúc 7 giờ sáng, Một người xuất phát từ A, đi xe đạp về B. Đến 11 giờ trưa người đó dừng lại nghỉ ăn trưa một tiếng, sau đó lại đi tiếp và 3 giờ chiều thì về đến B. Do ngược gió, cho nen tốc độ của người đó sau mỗi giờ lại giảm đi 2 km. Tìm tốc độ của người đó khi xuất phát, biết rằng tốc đọ đi trong tiếng cuối quãng đường là 10 km/ giờ. Giải: Thời gian người đó đi trên đường là: (11 – 7) + (15 – 12) = 7 (giờ) Ta nhận xét: Tốc độ người đó đi trong tiếng thứ 7 là: 10 (km/giờ) = 10 + 2 x 0 Tốc độ người đó đi trong tiếng thứ 6 là: 12 (km/giờ) = 10 + 2 x 1 Tốc độ người đó đi trong tiếng thứ 5 là: 14 (km/giờ) = 10 + 2 x 2 . . . Từ đó rút ra tốc độ người đó lúc xuất phát (trong tiếng thứ nhất) là: 10 + 2 x 6 = 22 (km/giờ) Bài 4: Điền các số thích hợp vào ô trống, sao cho tổng các số ở 3 ô liên tiếp đều bằng 1996: Giải: Ta đánh số các ô theo thứ tự như sau: Theo điều kiện của đầu bài ta có: 496 + ô7 + ô 8 = 1996 ô7 + ô8 + ô9 = 1996 Vậy ô9 = 496. Từ đó ta tính được ô8 = ô5 = ô2 = 1996 – (496 + 996) = 504; ô7 = ô4 = ô1 = 996 và ô3 = ô6 = 496 Điền vào ta được dãy số: Dạng 2. Xác định số a có thuộc dãy đã cho hay không: Cách giải: - Xác định quy luật của dãy. - Kiểm tra số a có thoả mãn quy luật đó hay không. Bài tập: Em hãy cho biết: a, Các số 50 và 133 có thuộc dãy 90, 95, 100,. .. hay không? b, Số 1996 thuộc dãy 3, 6, 8, 11,. .. hay không? c, Số nào trong các số 666, 1000, 9999 thuộc dãy 3, 6, 12, 24,. ..? Giải thích tại sao? Giải: a, Cả 2 số 50 và 133 đều không thuộc dãy đã cho vì - Các số hạng của dãy đã cho đều lớn hơn 50; - Các số hạng của dãy đã cho đều chia hết cho 5 mà 133 không chia hết cho 5. b, Số 1996 không thuộc dãy đã cho, Vì mọi số hạng của dãy khi chia cho đều dư 2 mà 1996: 3 thì dư 1. c, Cả 3 số 666, 1000, 9999 đều không thuộc dãy 3, 6, 12, 24,. .., vì - Mỗi số hạng của dãy (kể từ số hạng thứ 2) bằng số hạng liền trước nhân với 2. Cho nên các số hạng (kể từ số hạng thứ 3) có số hạng đứng liền trước là số chẵn mà 666: 2 = 333 là số lẻ. - Các số hạng của dãy đều chia hết cho 3 mà 1000 không chia hết cho 3 - Các số hạng của dãy (kể từ số hạng thứ hai) đều chẵn mà 9999 là số lẻ. ----------------------- * BÀI TẬP VỀ NHÀ: Bài 1: Viết tiếp hai số hạng của dãy số sau: a, 100; 93; 85; 76;... b, 10; 13; 18; 26;... c, 0; 1; 2; 4; 7; 12;... d, 0; 1; 4; 9; 18;... e, 5; 6; 8; 10;... f, 1; 6; 54; 648;... g, 1; 3; 3; 9; 27;... h, 1; 1; 3; 5; 17;... Bài 2: Điền thêm 7 số hạng vào tổng sau sao cho mỗi số hạng trong tổng đều lớn hơn số hạng đứng trước nó: 49 +. .. . .. = 420. Giải thích cách tìm. Bài 3: Tìm hai số hạng đầu của các dãy sau: a,. . . , 39, 42, 45; b,. . . , 4, 2, 0; c,. . . , 23, 25, 27, 29; Biết rằng mỗi dãy có 15 số hạng. Bài 4: a, Điền các số thích hợp vào các ô trống, sao cho tích các số của 3 ô liên tiếp đều bằng 2000 b, Cho 9 số: 1, 2, 3, 4, 5, 6, 7, 8 và 9. Hãy điền mỗi số vào 1 ô tròn sao cho tổng của 3 số ở 3 ô thẳng hàng nhau đều chia hết cho 5. Hãy giải thích cách làm. c, Hãy điền số vào các ô tròn sao cho tổng của 3 ô liên tiếp đều bằng nhau. Giải thích cách làm.? ----------------------- Dạng 3. Tìm số số hạng của dãy số: * Lưu ý: - ở dạng này thường sử dụng phương pháp giải toán khoảng cách (trồng cây).Ta có công thức sau: Số số hạng của dãy = Số khoảng cách + 1 - Nếu quy luật của dãy là: số đứng sau bằng số hạng liền trước cộng với số không đổi thì: Số các số hạng của dãy = (Số cuối – số đầu): K/c + 1 Bài tập vận dụng: Bài 1: Viết các số lẻ liên tiếp từ 211. Số cuối cùng là 971. Hỏi viết được bao nhiêu số? Giải: Hai số lẻ liên tiếp hơn kém nhau 2 đơn vị Số cuối hơn số đầu số đơn vị là: 971 – 211 = 760 (đơn vị) 760 đơn vị có số khoảng cách là: 760: 2 = 380 (K/ c) Dãy số trên có số số hạng là: 380 +1 = 381 (số) Đáp số:381 số hạng Bài 2: Cho dãy số 11, 14, 17,. .., 68. a, Hãy xác định dãy trên có bao nhiêu số hạng? b, Nếu ta tiếp tục kéo dài các số hạng của dãy số thì số hạng thứ 1 996 là số mấy? Giải: a, Ta có: 14 – 11 = 3 17 – 14 = 3 Vậy quy luật của dãy là: mỗi số hạng đứng sau bằng số hạng đứng trước cộng với 3. Số các số hạng của dãy là: ( 68 – 11 ): 3 + 1 = 20 (số hạng) b, Ta nhận xét: Số hạng thứ hai: 14 = 11 + 3 = 11 + (2 – 1) x 3 Số hạng thứ ba: 17 = 11 + 6 = 11 + (3 – 1) x 3 Số hạng thứ tư : 20 = 11 + 9 = 11 + (4 – 1) x 3 Vậy số hạng thứ 1 996 là: 11 + (1 996 – 1) x 3 = 5 996 Đáp số: 20 số hạng; 5 996 Bài 3: Trong các số có ba chữ số, có bao nhiêu số chia hết cho 4? Giải: Ta có nhận xét:số nhỏ nhất có ba chữ số chia hết cho 4là 100 và số lớn nhất có ba chữ số chia hết cho 4 là 996. Như vậy các số có ba chữ số chia hết cho 4 lập thành một dãy số có số hạng đầu là 100, số hạng cuối là 996 và mỗi số hạng của dãy (Kể từ số hạng thứ hai) bằng số hạng đứng kề trước cộng với 4. Vậy các số có 3 chữ số chia hết cho 4 là: (996 – 100): 4 + 1 = 225 (số) Đáp số: 225 số Dạng 4. Tìm tổng các số hạng của dãy số: * Cách giải: Nếu các số hạng của dãy số cách đều nhau thì tổng của 2 số hạng cách đều số hạng đầu và số hạng cuối trong dãy đó bằng nhau. Vì vậy: Tổng các số hạng của dãy = tổng của 1 cặp 2 số hạng cách đều số hạng đầu và cuối x số hạng của dãy: 2 Bài tập vận dụng: Bài 1: Tính tổng của 100 số lẻ đầu tiên. Giải: Dãy của 100 số lẻ đầu tiên là: 1 + 3 + 5 + 7 + 9 +. . . + 197 + 199. Ta có: 1 + 199 = 200 3 + 197 = 200 5 + 195 = 200 ... Vậy tổng phải tìm là: 200 x 100: 2 = 10 000 Đáp số 10 000 Bài 2: Cho 1 số tự nhiên gồm các số tự nhiên liên tiếp từ 1 đến 1983 được viết theo thứ tự liền nhau như sau: 1 2 3 4 5 6 7 8 9 10 11 12 13. . . 1980 1981 1982 1983 Hãy tính tổng tất cả các chữ số của số đó. (Đề thi học sinh giỏi toàn quốc năm 1983) Giải: Cách 1. Ta nhận xét: * các cặp số: - 0 và 1999 có tổng các chữ số là: 0 + 1 + 9 + 9 + 9 = 28 - 1 và 1998 có tổng các chữ số là: 1 + 1 + 9 + 9 + 8 = 28 - 2 và 1997 có tổng các chữ số là: 2 + 1 + 9 + 9 + 7 = 28 - 998 và 1001 có tổng các chữ số là: 9 + 9 + 8 + 1 + 1 = 28 - 999 và 1000 có tổng các chữ số là: 9 + 9 + 9 + 1 = 28 Như vậy trong dãy số 0, 1, 2, 3, 4, 5,. . . , 1997, 1998, 1999 Hai số hạng cách đều số hạng đầu và số hạng cuối đều có tổng bằng 28. Có 1000 cặp như vậy, do đó tổng các chữ số tạo nên dãy số trên là: 28 x 1000 = 28 000 * Số tự nhiên được tạo thành bằng cách viết liên tiếp các số tự nhiên từ 1984 đến 1999 là * Vậy tổng các chữ số của số tự nhiên đã cho là: 28 000 – 382 = 27 618 Bài 3: Viết các số chẵn liên tiếp: 2, 4, 6, 8,. . . , 2000 Tính tổng của dãy số trên Giải: Dãy số trên 2 số chẵn liên tiếp hơn kém nhau 2 đơn vị. Dãy số trên có số số hạng là: (2000 – 2): 2 + 1 = 1000 (số) 1000 số có số cặp số là: 1000: 2 = 500 (cặp) Tổng 1 cặp là: 2 + 2000 = 2002 Tổng của dãy số là: 2002 x 500 = 100100 ----------------------- * BÀI TẬP VỀ NHÀ: Bài 1: Tính tổng: a, 6 + 8 + 10 +. .. + 1999. b, 11 + 13 + 15 +. .. + 147 + 150 c, 3 + 6 + 9 +. .. + 147 + 150. Bài 2: Viết 80 số chẵn liên tiếp bắt đầu từ 72. Số cuối cùng là số nào? Bài 3: Có bao nhiêu số: a, Có 3 chữ số khi chia cho 5 dư 1? dư 2? b, Có 4 chữ số chia hết cho 3? c, Có 3 chữ số nhỏ hơn 500 mà chia hết cho 4? Bài 4: Khi đánh số thứ tự các dãy nhà trên một đường phố, người ta dùng các số lẻ liên tiếp 1, 3, 5, 7,. .. để đánh số dãy thứ nhất và các số chẵn liên tiếp 2, 4, 6, 8,. .. để đánh số dãy thứ hai. Hỏi nhà cuối cùng trong dãy chẵn của đường phố đó là số mấy, nếu khi đánh số dãy này người ta đã dùng 769 chữ cả thảy? Bài 5: Cho dãy các số chẵn liên tiếp 2, 4, 6, 8,. .. Hỏi số 1996 là số hạng thứ mấy của dãy này? Giải thích cách tìm. Bài 6: Tìm tổng của: a, Các số có hai chữ số chia hết cho 3; b, Các số có hai chữ số chia cho 4 dư 1; c, 100 số chẵn đầu tiên; d, 10 số lẻ khác nhau lớn hơn 20 và nhỏ hơn 40. Dạng 5. Tìm số hạng thứ n: Bài tập vận dụng: Bài 1: Cho dãy số: 1, 3, 5, 7,... Hỏi số hạng thứ 20 của dãy là số nào? Giải: Dãy đã cho là dãy số lẻ nên các số liên tiếp trong dãy cách nhau 1 khoảng cách là 2 đơn vị. 20 số hạng thì có số khoảng cách là: 20 – 1 = 19 (khoảng cách) 19 số có số đơn vị là: 19 x 2 = 38 (đơn vị) Số cuối cùng là: 1 + 38 = 39 Đáp số: Số hạng thứ 20 của dãy là 39 Bài 2: Viết 20 số lẻ, số cuối cùng là 2001. Số đầu tiên là số nào? Giải: 2 số lẻ liên tiếp hơn kém nhau 2 đơn vị 20 số lẻ có số khoảng cách là: 20 – 1 = 19 (khoảng cách) 19 khoảng cách có số đơn vị là: 19 x 2 = 38 (đơn vị) Số đầu tiên là: 2001 – 38 = 1963 Đáp số : số đầu tiên là 1963. Công thức: a, Cuối dãy: n = Số đầu + khoảng cách x (n – 1) b, Đầu dãy: n = Số cuối – khoảng cách x (n – 1) ----------------------- * BÀI TẬP TỰ LUYỆN: Bài 1: Viết các số chẵn bắt đầu từ 2. Số cuối cùng là 938. Dãy số có bao nhiêu số? Bài 2: Tính: 2 + 4 + 6 +. .. + 2000. Bài 3: Cho dãy số: 4, 8, 12,... Tìm số hạng 50 của dãy số. Bài 4: Viết 25 số lẻ liên tiếp số cuối cùng là 2001. Hỏi số đầu tiên là số nào? Bài 5: Tính tổng: a, 6 + 8 + 10 +. .. + 2000 b, 11 + 13 + 15 +. .. + 1999. c, 3 + 6 + 9 +. .. + 147 + 150. Bài 6: Viết 80 số chẵn liên tiếp bắt đầu từ 72. Hỏi số cuối cùng là số nào? Bài 7: Cho dãy số gồm 25 số hạng: .. . , 146, 150, 154. Hỏi số đầu tiên là số nào? Dạng 6. Tìm số chữ số biết số số hạng Bài tập vận dụng: Bài 1: Cho dãy số 1, 2, 3, 4,. .., 150. Dãy này có bao nhiêu chữ số Giải: Dãy số 1, 2, 3,. .., 150 có 150 số. Trong 150 số có + 9 số có 1 chữ số + 90 số có 2 chữ số + Các số có 3 chữ số là: 150 – 9 – 90 = 51 (chữ số) Dãy này có số chữ số là: 1 x 9 + 2 x 90 + 3 x 51 = 342 (chữ số) Đáp số: 342 chữ số Bài 2: Viết các số chẵn liên tiếp tữ 2 đến 1998 thì phải viết bao nhiêu chữ số? Giải: Giải: Dãy số: 2, 4,. .., 1998 có số số hạng là: (1998 – 2): 2 + 1 = 999 (số) Trong 999 số có: 4 số chẵn có 1 chữ số 45 số chẵn có 2 chữ số 450 số chẵn có 3 chữ số Các số chẵn có 4 chữ số là: 999 – 4 – 45 – 450 = 500 (số) Số lượng chữ số phải viết là: 1 x 4 + 2 x 45 + 3 x 450 + 4 x 500 = 3444 (chữ số) đáp số: 3444 chữ số Ghi nhớ: Để tìm số chữ số ta: + Tìm xem trong dãy số có bao nhiêu số số hạng + Trong số các số đó có bao nhiêu số có 1, 2, 3, 4,. .. chữ số Dạng 7. Tìm số số hạng biết số chữ số Bài tập vận dụng: Bài 1: Một quyển sách coc 435 chữ số. Hỏi quyển sách đó có bao nhiêu trang? Giải: Để đánh số trang sách người ta bắt đầu đánh tữ trang số 1. Ta thấy để đánh số trang có 1 chữ số người ta đánh mất 9 số và mất: 1 x 9 = 9 (chữ số) Số trang sách có 2 chữ số là 90 nên để đánh 90 trang này mất: 2 x 90 = 180 (chữ số) Đánh quyển sách có 435 chữ số như vậy chỉ đến số trang có 3 chữ số. Số chữ số để đánh số trang sách có 3 chữ số là: 435 – 9 – 180 = 246 (chữ số) 246 chữ số thì đánh được số trang có 3 chữ số là: 246: 3 = 82 (trang) Quyển sách đó có số trang là: 9 + 90 + 82 = 181 (trang) đáp số: 181 trang Bài 2: Viết các số lẻ liên tiếp bắt đầu từ số 87. Hỏi nếu phải viết tất cả 3156 chữ số thì viết đến số nào? Giải: Từ 87 đến 99 có các số lẻ là: (99 – 87): 2 + 1 = 7 (số) Để viết 7 số lẻ cần: 2 x 7 = 14 (chữ số) Có 450 số lẻ có 3 chữ số nên cần: 3 x 450 = 1350 (chữ số) Số chữ số dùng để viết các số lẻ có 4 chữ số là: 3156 – 14 – 1350 = 1792 (chữ số) Viết được các số có 4 chữ số là: 1792: 4 = 448 (số) Viết đến số: 999 + (448 – 1) x 2 = 1893 Dạng 8. Viết liên tiếp một nhóm chữ số hoặc chữ cái Bài tập vận dụng: Bài 1: Viết liên tiếp các chữ cái A, N, L, Ư, U thành dãy AN LƯU, AN LƯU,... Chữ cãi thứ 1998 là chữ cái gì? Giải: Để viết 1 nhóm AN LƯU người ta phải viết 5 chữ cái A, N, L, Ư, U. Nếu xếp 5 chữ cái ấy vào 1 nhóm ta có: Chia cho 5 không dư là chữ cái U Chia cho 5 dư 1 là chữ cái A Chia cho 5 dư 2 là chữ cái N Chia cho 5 dư 3 là chữ cái L Chia cho 5 dư 4 là chữ cái Ư Mà: 1998: 5 = 339 (nhóm) dư 3 Vậy chữ cái thứ 1998 là chữ cái L của nhóm thứ 400 Bài 2: Một người viết liên tiếp nhóm chữ Tổ quốc Việt Nam thành dãy Tổ quốc việt nam Tổ quốc việt nam... a, Chữ cái thứ 1996 trong dãy là chữ gì? b, Người ta đếm được trong dãy có 50 chữ T thì dãy đó có bao nhiêu chữ Ô? bao nhiêu chữ I c, Bạn An đếm được trong dãy có 1995 chữ Ô. Hỏi bạn ấy đếm đúng hay sai? Giải thích tại sao? d, Người ta tô màu các chữ cái trong dãy theo thứ tự: Xanh, đỏ, tím, vàng; xanh, đỏ,. .. Hỏi chữ cái thứ 1995 trong dãy tô màu gì? Giải: a, Nhóm chữ TỔ QUỐC VIỆT NAM có 13 chữ cái. Mà 1996: 13 = 153 (nhóm) dư 7. Như vậy kể từ chữ cái đầu tiên đến chữ cái thứ 1996 trong dãy người ta đã viết 153 lần nhóm chữ TỔ QUỐC VIỆT NAM và 7 chữ cái tiếp theo là: TỔ QUỐC V. Chữ cái thứ 1996 trong dãy là chữ V. b, Mỗi nhóm chữ TỔ QUỐC VIỆT NAM có 2 chữ T và cũng có 2 chữ Ô và 1 chữ I. vì vậy, nếu người ta đếm được trong dãy có 50 chữ T thì dãy đó cũng phải có 50 chữ Ô và có 25 chữ I. c, Bạn đó đã đếm sai, vì số chữ Ô tro
Tài liệu đính kèm: