CÂU HỎI ÔN TẬP CHƯƠNG 1 -HÌNH HỌC 12 Câu 1: Khối đa diện là: A. Cách gọi khác của một hình đa diện. B. Phần không gian được giới hạn bởi một hình đa diện. C. Phần không gian được giới hạn bởi một hình đa diện, kể cả hình đa diện đó. D. Các khối chóp, khối lăng trụ. Câu 2: Khối tứ diện đều có tính chất: A. Mỗi mặt của nó là một tam giác đều và mỗi đỉnh của nó là đỉnh chung của 4 mặt. B. Mỗi đỉnh của nó là đỉnh chung của 4 mặt C. Mỗi mặt của nó là một tam giác đều và mỗi đỉnh của nó là đỉnh chung của đúng 3 mặt. D. Mỗi mặt của nó là một tứ giác đều và mỗi đỉnh của nó là đỉnh chung của 3 mặt. Câu 3: Khối bát diện đều có tính chất: A. Mỗi mặt của nó là một tứ giác đều và mỗi đỉnh của nó là đỉnh chung của 3 mặt. B. Mỗi mặt của nó là một tam giác đều và mỗi đỉnh của nó là đỉnh chung của 6 mặt. C. Mỗi mặt của nó là một lục giác đều và mỗi đỉnh của nó là đỉnh chung của 8 mặt D. Mỗi mặt của nó là một tam giác đều và mỗi đỉnh của nó là đỉnh chung của 4 mặt. Câu 4: Khối tứ diện đều có mấy mặt phẳng đối xứng: A. 3 B . 4 C.6 D.5 Câu 5: Khối bát diện đều có mấy mặt phẳng đối xứng: A. 8 B . 4 C.6 D.9 Câu 6: Khối đa diện đều loại có mấy mặt phẳng đối xứng: A. 8 B . 4 C.6 D.9 Câu 7 : Công thức tính thể tích khối chóp có diện tích đáy là B và chiều cao h là : Câu 8 : Công thức tính thể tích khối lăng trụ có diện tích đáy là B và chiều cao h là : Câu 9 : Thể tích khối lập phương có cạnh bằng a là : Câu 10 : Thể tích khối hộp chữ nhật có ba kích thước lần lượt a,b,c là : Câu 11: Thể tích khối lập phương ABCD.A’B’C’C’ có AC’ = là : Câu 12: Khối chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh a, SA= là đường cao Thể tích V của khối chóp là: A. B. C. D. Câu 13: Khối chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh , tam giác SAD cân tại S và (SAD ) vuông góc với mặt đáy .Biết Thể tích V của khối chóp là .Tính d(B,(SCD)) A. B. C. D. Câu 14: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = 2a, AC = . Hình chiếu của S lên mặt phẳng (ABC) là trung điểm H của cạnh AB. Cạnh bên SC hợp với đáy (ABC) một góc bằng 600. Khoảng cách từ A đến mặt phẳng (SBC) là: A. B. C. D. Câu 15: Hai khối chóp lần lượt có diện tích đáy, chiều cao và thể tích là và . Biết và . Khi đó bằng: A. 2 B. C. D. Câu 15: Khối lăng trụ đứng có đáy là tam giác đều cạnh và đường chéo mặt bên bằng 4a có thể tích bằng: A. B. C. D. Câu 16: Trong hình tứ diện đều ABCD, gọi O là trọng tâm của tam giác BCD. Mệnh đề nào sau đây SAI: A. Điểm O cách đều các mặt phẳng (ABC), (ACD), (ADB) B. Độ dài đoạn AO bằng C. Điểm O cách đều các đường thẳng BC, CD và DB D. OA vuông góc với mặt phẳng (BCD) Câu 17: Khối chóp S.ABC có đáy ABC vuông cân tại A, AB = a . Mặt bên SBC vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp S.ABC bằng: A. B. C. D. Kết quả khác. Câu 18: Khối chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh a, SA là đường cao và cạnh SC hợp với đáy góc . Thể tích của khối chóp là: A. B. C. D. Câu 19: Khối chóp tam giác đều có cạnh đáy bằng a và cạnh bên bằng có thể tích bằng: A. B. C. D. Câu 20: Khối chóp S.ABC có thể tích . Gọi M, N là các điểm lần lượt lấy trên cạnh SA, SB sao cho 2SM=3MA; 2SN=NB. Thể tích khối chóp S.MNC bằng: A. B. C. D. Câu 21: Cho hình lăng trụ ABC.A’B’C’ có thể tích V. Gọi M, N lần lượt là trung điểm của AB và AC. Khi đó thể tích của khối chóp C’AMN là: A. B. C. D. Câu 22: Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác vuông cân ở C. Cạnh BB’ = a và tạo với đáy một góc bằng 600. Hình chiếu vuông góc hạ từ B’ lên đáy trùng với trọng tâm của tam giác ABC. Thể tích khối lăng trụ ABC.A’B’C’ là: A. B. C. D. Câu 23: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a và cạnh bên SA vuông góc với đáy. Biết ; khi đó khoảng cách từ A đến mặt phẳng (SBC) là A. a B. C. D. Câu 24. Cho khối chóp có tam giác vuông tại , Tính thể tích khối chóp biết rằng A. B. C. D. Câu 25. Cho khối chóp có đáy là tam giác đều cạnh . Hai mặt bên và cùng vuông góc với đáy. Tính thể tích khối chóp biết A. B. C. D. Câu 26. Cho hình chóp SABC có SB = SC = BC = CA = a . Hai mặt (ABC) và (ASC) cùng vuông góc với (SBC). Tính thể tích hình chóp . A. B. C. D. Câu 27. Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B với AC = a biết SA vuông góc với đáy ABC và SB hợp với đáy một góc 60o. Tính thể tích hình chóp A. B. C. D. Câu 28. Cho hình chóp SABC có đáy ABC là tam giác đều cạnh a biết SA vuông góc với đáy ABC và (SBC) hợp với đáy (ABC) một góc 60o. Tính thể tích hình chóp A. B. C. D. Câu 29. Cho hình chóp SABCD có đáy ABCD là hình vuông có cạnh a và SA vuông góc đáy ABCD và mặt bên (SCD) hợp với đáy một góc 60o. Tính thể tích hình chóp SA BCD A. B. C. D. Câu 30. Cho khối chóp có đay là hình chữa nhật tâm , vuông góc với đáy. Tính thể tích khối chóp biết A. B. C. D. Câu 31. Cho khối chóp có đáy là hình vuông cạnh . Hai mặt phẳng cùng vuông góc với đáy. Tính thể tích khối chóp biết A. B. C. D. Câu 32. Cho khối chóp có đáy là hình chữ nhật . Gọi là trung điểm của , biết . Tính thể tích khối chóp biết . A. B. C. D. Câu 33. Cho khối chóp có đáy là hình vuông cạnh . Gọi là trung điểm cạnh biết . Tính thể tích khối chóp biết tam giác đều A. B . C. D. Câu 34. Cho khối chóp SABC có đáy ABC là tam giác cân tại A với BC = 2a , , biết và mặt (SBC) hợp với đáy một góc 45o . Tính thể tích khối chóp SABC A. B. C. D. Câu 35. Cho khối chóp SABCD có đáy ABCD là hình vuông biết SA (ABCD),SC = a và SC hợp với đáy một góc 60o Tính thể tích khối chóp A. B. C. D. Câu 36. Cho khối chóp SABCD có đáy ABCD là hình chữ nhật biết rằng SA (ABCD) , SC hợp với đáy một góc 45o và AB = 3a , BC = 4a. Tính thể tích khối chóp A. B. C. D. Câu 37. Cho khối chóp SABCD có đáy ABCD là hình thoi cạnh a và góc nhọn A bằng 60o và SA (ABCD) Biết rằng khoảng cách từ A đến cạnh SC = a.Tính thể tích khối chóp SABCD A. B. C. D. Câu 38. Cho khối chóp SABCD có đáy ABCD là hình thang vuông tại A và B biết AB = BC = a , AD = 2a , SA (ABCD) và (SCD) hợp với đáy một góc 60o Tính thể thích khối chóp SABCD. A. B. C. D. Câu 39. Cho khối chóp SABCD có đáy ABCD là nửa lục giác đều nội tiếp trong nửa đường tròn đường kính AB = 2R biết (SBC) hợp với đáy ABCD một góc 45o.Tính thể tích khối chóp SABCD A. B. C. D. Câu 40. Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh a. Mặt bên SAB là tam giác đều nằm trong mặt phẳng vuông góc với đáyABCD. Tính thể tích khối chóp S.ABCD. A. B. C. D. Câu 41. Cho tứ diện ABCD có ABC là tam giác đều ,BCD là tam giác vuông cân tại D , (ABC)(BCD) và AD hợp với (BCD) một góc 60o .Tính thể tích tứ diện ABCD. A. B. C. D. Câu 42. Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, có BC = a. Mặt bên SAC vuông góc với đáy, các mặt bên còn lại đều tạo với mặt đáy một góc 450.Tính thể tích khối chóp SABC A. B. C. D. Câu 43. Cho hình chóp SABC có đáy ABC vuông cân tại a với AB = AC = a biết tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với (ABC) ,mặt phẳng (SAC) hợp với (ABC) một góc 45o. Tính thể tích của SABC. A. B. C. D. Câu 44. Cho hình chóp SABC có ;; SBC là tam giác đều cạnh a và (SAB) (ABC). Tính thể tích khối chóp SABC. A. B. C. D. Câu 45.Cho hình chóp SABCD có ABCD là hình chữ nhật , SAB đều cạnh a nằm trong mặt phẳng vuông góc với (ABCD) biết (SAC) hợp với (ABCD) một góc 30o .Tính thể tích hình chóp SABCD A. B. C. D. Câu 46. Cho hình chóp SABCD có ABCD là hình chữ nhật có AB = 2a , BC = 4a, SAB (ABCD) , hai mặt bên (SBC) và (SAD) cùng hợp với đáy ABCD một góc 30o .Tính thể tích hình chóp SABCD A. B. C. D. Câu 47. Cho hình chóp SABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và SAD vuông cân tại S , nằm trong mặt phẳng vuông góc với ABCD. Tính thể tích hình chóp SABCD. A. B. C. D. Câu 48. Cho hình chóp SABCD có đáy ABCD là hình thang vuông tại a và D; AD = CD = a ; AB = 2a,SAB đều nằm trong mặt phẳng vuông góc với (ABCD). Tính thể tích khối chóp SABCD . A. B. C. D. Câu 49. Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông tại A, AC=a, . Đường chéo BC’ của mặt bên (BCC’B’) tạo với mặt phẳng (AA’C’C) một góc . Tính thể tích của khối lăng trụ theo a A. B. C. D. Câu 50 .Cho hình chóp S.ABCD có đáy là hình thoi, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Biết AC=2a, BD=3a. tính khoảng cách giữa hai đường thẳng AD và SC A. B. C. D. Câu 51. Cho hình chóp đều S.ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy góc . Mặt phẳng (P) chứa AB và đi qua trọng tâm G của tam giác SAC cắt SC, SD lần lượt tại M,N. Tính theo a thể tích khối chóp S.ABMN. A. B. C. D. Câu 52.Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của A’ xuống (ABC) là trung điểm của AB. Mặt bên (ACC’A’) tạo với đáy góc . Tính thể tích khối lăng trụ này A. B. C. D. Câu 53. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành với AB=a, AD=2a, , SA vuông góc với đáy, góc giữa SC và đáy bằng . Thể tích khối chóp S.ABCD là V. Tỷ số là A. B. C. D. Câu 54. Cho hình chóp S.ABCD. Lấy một điểm M thuộc miền trong tam giác SBC. Lấy một điểm N thuộc miền trong tam giác SCD. Thiết diện của hình chóp S.ABCD với (AMN) là A. Hình tam giác B. Hình tứ giác C. Hình ngũ giác D. Hình lục giác Câu 55. Cho hình chóp S.ABC có đáy là tam giác vuông cân tại C, cạnh SA vuông góc với mặt đáy , biết AB=2a, SB=3a. Thể tích khối chóp S.ABC là V. Tỷ số có giá trị là. A. B. C. D. Câu 56.Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm I và có cạnh bằng a, góc . Gọi H là trung điểm của IB và SH vuông góc với (ABCD). Góc giữa SC và (ABCD) bằng . Tính thể tích khối chóp S.AHCD. A. B. C. D. Câu 57. Cho hình chóp S.ABC có đáy là tam giác cân tại A, AB=AC=a, . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Tính theo a thể tích khối chóp S.ABC A. B. C. D. Câu 58.Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, hình chiếu vuông góc H của S lên mặt (ABCD) là trung điểm của đoạn AB. Gọi K là trung điểm của AD. Tính khoảng cách giữa hai đường SD và HK theo a A. B. C. D. Câu 59. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa mặt bên và đáy bằng . M,N là trung điểm của cạnh SD, DC. Tính theo a thể tích khối chóp M.ABC. A. B. C. D. Câu 60. Cho chóp tam giác đều SABC cạnh đáy bằng a và cạnh bên bằng 2a. Chứng minh rằng chân đường cao kẻ từ S của hình chóp là tâm của tam giác đều ABC.Tính thể tích chóp đều SABC A. B. C. D. Câu 61. Cho khối chóp tứ giác SABCD có tất cả các cạnh có độ dài bằng a . Tính thể tích khối chóp SABCD A. B. C. D. Câu 62. Cho khối tứ diện đều ABCD cạnh bằng a, M là trung điểm DC. Tính khoảng cách từ M đến mp(ABC). A. B. C. D. Câu 63. Cho hình chóp tam giác đều SABC có cạnh bên a, góc ở đáy của mặt bên là 45o.Tính thể tích hình chóp SABC. A. B. C. D. Câu 64. Cho hình chóp tam giác đều SABC có cạnh đáy a và mặt bên hợp với đáy một góc 60o. Tính thể tích hình chóp SABC A. B. C. D. Câu 65. Cho hình chóp tam giác đều có đường cao h và mặt bên có góc ở đỉnh bằng 60o. Tính thể tích hình chóp. A. B. C. D. Câu 66. Cho hình chóp tứ giác đều SABCD có cạnh đáy a và . Tính thể tích hình chóp A. B. C. D. Câu 67. Cho hình chóp tứ giác đều có mặt bên hợp với đáy một góc 45o và khoảng cách từ chân đường cao của chóp đến mặt bên bằng a.Tính thể tích hình chóp A. B. C. D. Câu 68. Cho hình chóp SABCD có tất cả các cạnh bằng nhau. Chứng minh rằng SABCD là chóp tứ giác đều.Tính cạnh của hình chóp này khi thể tích của nó bằng A. B. C. D. Câu 69. Cho khối chóp tứ giác đều SABCD. Một mặt phẳng qua A, B và trung điểm M của SC . Tính tỉ số thể tích của hai phần khối chóp bị phân chia bởi mặt phẳng đó A. B. C. D. 1 Câu 70. Cho hình chóp tứ giác đều S.ABCD, đáy là hình vuông cạnh a, cạnh bên tạo với đáy góc . Gọi M là trung điểm SC. Mặt phẳng đi qua AM và song song với BD, cắt SB tại E và cắt SD tại F. Tính thể tích khối chóp S.AEMF A. B. C. D. Câu 71. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc đáy, . Gọi B’, D’ là hình chiếu của A lần lượt lên SB, SD. Mặt phẳng (AB’D’) cắt SC tại C’.Tính thể tích khối chóp S.AB’C’D’ A. B. C. D. Câu 72. Cho hình chóp SABCD có đáy ABCD là hình bình hành và I là trung điểm của SC.Mặt phẳng qua AI và song song với BD chia hình chóp thành 2 phần.Tính tỉ số thể tích 2 phần này A. 1 B. C. D. Câu 73. Cho hình chóp SABCD có đáy ABCD là hình bình hành và lấy M trên SA sao cho Tìm x để mặt phẳng (MBC) chia hình chóp thành 2 phần có thể tích bằng nhau A. B. C. D.
Tài liệu đính kèm: