Bộ đề thi THPT quốc gia chuẩn cấu trúc bộ giáo dục môn: Toán Học - Đề 2

doc 18 trang Người đăng minhhieu30 Lượt xem 651Lượt tải 0 Download
Bạn đang xem tài liệu "Bộ đề thi THPT quốc gia chuẩn cấu trúc bộ giáo dục môn: Toán Học - Đề 2", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Bộ đề thi THPT quốc gia chuẩn cấu trúc bộ giáo dục môn: Toán Học - Đề 2
ĐỀ SỐ 2
BỘ ĐỀ THI THPT QUỐC GIA CHUẨN CẤU TRÚC BỘ GIÁO DỤC
Môn: Toán học
Thời gian làm bài: 50 phút, không kể thời gian phát đề
Đề thi gồm 08 trang
«««««
Câu 1: Cho các hàm số có đồ thị lần lượt là (C) và (C1). Xét các khẳng định sau:
Nếu hàm số là hàm số lẻ thì hàm số cũng là hàm số lẻ.
Khi biểu diễn (C) và trên cùng một hệ tục tọa độ thì (C) và có vô số điểm chung.
Với phương trình luôn vô nghiệm.
Đồ thị (C1) nhận trục tung làm trục đối xứng
Số khẳng định đúng trong các khẳng định trên là:
	A. 1	B. 2	C. 3	D. 4
Câu 2: Số cực trị của hàm số là:
	A. Hàm số không có cực trị	B. có 3 cực trị
	C. Có 1 cực trị	D. Có 2 cực trị
Câu 3: Cho hàm số . Khẳng định nào sau đây là khẳng định đúng ?
	A. Đồ thị hàm số có hai điểm cực trị nằm về hai phía trục Oy
	B. Hàm số đạt cực đại tại điểm 
	C. Hàm số đạt cực tiểu tại điểm 
	D. Hàm số đồng biến trên khoảng 
Câu 4: Giá trị nhỏ nhất của hàm số trên khoảng 
	A. 	B. -3	C. 0	D. Không tồn tại
Câu 5: Cho hàm số có tập xác định và liên tục trên R, và có đạo hàm cấp 1, cấp 2 tại điểm . Xét các khẳng định sau:
Nếu thì a là điểm cực tiểu.
Nếu thì a là điểm cực đại.
Nếu thì a không phải là điểm cực trị của hàm số 
Số khẳng định đúng là
	A. 0	B. 1	C. 2	D. 3
Câu 6: Cho hàm số (m: tham số). Với giá trị nào của m thì hàm số đã cho có tiệm cận đứng
	A. 	B. 	C. 	D. 
Câu 7: Hàm số đạt cực đại tại khi m = ?
	A. -1	B. -3	C. 1	D. 3
Câu 8: Hàm số có giá trị nhỏ nhất trên đoạn bằng -1 khi:
	A. 	B. 	C. 	D. 
Câu 9: Tìm tất cả các giá trị của số thực m sao cho đồ thị hàm số có 2 đường tiệm cận.
	A. 	B. 	C. 	D. 
Câu 10: Hàm số luôn đồng biến trên các khoảng và khi và chỉ khi:
	A. 	B. 	C. 	D. 
Câu 11: Người ta muốn sơn một cái hộp không nắp, đáy hộp là hình vuông và có thể tích là 4 (đơn vị thể tích)? Tìm kích thước của hộp để dùng lượng nước sơn tiết kiệm nhất. Giả sử độ dày của lớp sơn tại mọi nơi trên hộp là như nhau.
	A. Cạnh ở đáy là 2 (đơn vị chiều dài), chiều cao của hộp là 1 (đơn vị chiều dài).
	B. Cạnh ở đáy là (đơn vị chiều dài), chiều cao của hộp là 2 (đơn vị chiều dài).
	C. Cạnh ở đáy là (đơn vị chiều dài), chiều cao của hộp là 0,5 (đơn vị chiều dài).
	D. Cạnh ở đáy là 1 (đơn vị chiều dài), chiều cao của hộp là 2 (đơn vị chiều dài).
Câu 12: Nếu thì :
	A. 	B. 
	C. 	D. 
Câu 13: Tính đạo hàm của hàm số 
	A. 	B. 
	C. 	D. 
Câu 14: Tìm tập xác định của hàm số sau 
	A. 	B. 
	C. 	D. 
Câu 15: Cho hàm số ( m là tham số). Tìm tất cả các giá trị m để hàm số f(x) xác định với mọi .
	A. 	B. 	C. 	D. 
Câu 16: Nếu thì 
	A. 	B. 	C. 	D. 
Câu 17: Phương trình có nghiệm là: chọn 1 đáp án đúng
	A. 	B. 	C. 	D. 
Câu 18: Biểu thức được viết dưới dạng lũy thừa số mũ hữu tỉ là:
	A. 	B. 	C. 	D. 
Câu 19: Cho và . Hỏi biểu thức nào đúng trong các biểu thức sau:
	A. 	B. 	C. 	D. 
Câu 20: Giá trị của biểu thức bằng:
	A. 3	B. 	C. 	D. 2
Câu 21: Anh Bách vay ngân hàng 100 triêu đồng, với lãi suất 1,1% / tháng. Anh Bách muốn hoàn nợ cho ngân hàng theo cách: sau đúng một tháng kể từ ngày vay, anh bắt đầu hoàn nợ, và những liên tiếp theo cách nhau đúng một tháng. Số tiền hoàn nợ ở mỗi lần là như nhau và trả hết nợ sau đúng 18 tháng kể từ ngày vay. Hỏi theo cách đó, tổng số tiền lãi mà anh Bách phải trả là bao nhiêu (làm tròn kết quả hàng nghìn)? Biết rằng, lãi suất ngân hàng không thay đổi trong suốt thời gian anh Bách vay.
	A. 10773700 (đồng).	B. 10774000 (đồng).
	C. 10773000 (đồng).	D. 10773800 (đồng).
Câu 22: Một nguyên hàm của là:
	A. 	B. 	C. 	D. 
Câu 23: Tìm họ nguyên hàm của hàm số 
	A. 	B. 
	C. 	D. 
Câu 24: Một vật chuyển động với vận tốc . Tính quãng đường S vật đó đi được trong 20 giây (làm tròn kết quả đến hàng đơn vị).
	A. 190 (m).	B. 191 (m).	C. 190,5 (m).	D. 190,4 (m).
Câu 25: Nguyên hàm của hàm số là:
	A. 	B. 	C. 	D. 
Câu 26: Tìm khẳng định đúng trong các khẳng định sau:
	A. 	B. 
	C. 	D. 
Câu 27: Tính diện tích S của hình phẳng (H) được giới hạn bởi các đường và các tiếp tuyến của (P) đi qua điểm 
	A. 	B. 	C. 	D. 
Câu 28: Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số , trục tung và đường thẳng . Tính thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh trục hoành.
	A. 	B. 	C. 	D. 
Câu 29: Cho số phức z thỏa mãn: . Tìm số phức liên hợp của z.
	A. 	B. 	C. 	D. 
Câu 30: Gọi là hai nghiệm của phương trình phức quy ước z2 là số phức có phần ảo âm. Tính 
	A. 	B. 	C. 	D. 
Câu 31: Biết điểm biểu diễn số phức z trong mặt phẳng tọa độ phức. Tính môđun của số phức .
	A. 	B. 	C. 	D. 
Câu 32: Cho số phức , biết rằng thỏa . Tìm số phức 
	A. 	B. 	C. 	D. 
Câu 33: Tìm phần thực, phần ảo của các số phức z, biết: 
	A. Phần thực bằng 5; phần ảo bẳng 12 hoặc bằng -12.
	B. Phần thực bằng 5; phần ảo bẳng 11 hoặc bằng -12.
	C. Phần thực bằng 5; phần ảo bẳng 14 hoặc bằng -12.
	D. Phần thực bằng 5; phần ảo bẳng 12 hoặc bằng -1.
Câu 34: Cho số phức . Tìm tập hợp các điểm biểu diễn số phức .
	A. Tập hợp các điểm biểu diễn số phức w nằm trên đường tròn có phương trình 
	B. Điểm biểu diễn số phức w là điểm có tọa độ 
	C. Điểm biểu diễn số phức w là điểm có tọa độ 
	D. Tập hợp các điểm biểu diễn số phức w nằm trên đường tròn có phương trình 
Câu 35: Khối chóp đều S.ABCD có tất cả các cạnh đều bằng a. Khi đó độ dài đường cao h của khối chóp là:
	A. 	B. 	C. 	D. 
Câu 36: Cho hình hộp chữ nhật ABCD.A’B’C’D’ có . Lấy điểm M trên cạnh AD sao cho . Tính thể tích khối chóp M.AB’C.
	A. 	B. 	C. 	D. 
Câu 37: Khối chóp S.ABC có đáy tam giác vuông cân tại B và . Góc giữa cạnh bên SB và mặt phẳng (ABC) bằng 600. Khi đó khoảng cách từ A đến (SBC) là:
	A. 	B. 	C. 	D. 
Câu 38: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, và vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng AB và SC
	A. 	B. 	C. 	D. 
Câu 39: Hình nón tròn xoay ngoại tiếp tứ diện đều cạnh a, có diện tích xung quanh là:
	A. 	B. 	C. 	D. 
Câu 40: Tìm khẳng định sai trong các khẳng định sau đây:
	A. Tồn tại mặt đi qua các đỉnh của một hình tứ diện bất kì.
	B. Tồn tại mặt cầu đi qua các đỉnh của một hình lăng trụ có đáy là tứ giác lồi.
	C. Tồn tại mặt cầu đi qua các đỉnh của một hình hộp chữ nhật.
	D. Tồn tại mặt cầu đi qua các đỉnh của hình chóp đa giác đều.
Câu 41: Cho hình nón S, đường cao SO. Gọi A, B là hai điểm thuộc đường tròn đáy của hình nón sao cho khoảng cách từ O đến AB bằng a và . Tính diện tích xung quanh hình nón.
	A. 	B. 	C. 	D. 
Câu 42: Một hình nón có thiết diện qua trục là tam giác đều. Tỉ số thể tích của khối cầu ngoại tiếp và khối cầu nội tiếp khối nón là:
	A. 8	B. 6	C. 4	D. 2
Câu 43: Cho ba điểm . Tìm tọa độ giao điểm của đường thẳng AB và mặt phẳng (yOz).
	A. 	B. 	C. 	D. 
Câu 44: Trong không gian Oxyz, cho các điểm . Tìm bán kính R của mặt cầu tâm D tiếp xúc với (ABC).
	A. 	B. 	C. 	D. 
Câu 45: Phương trình tổng quát của mặt phẳng qua điểm và vuông góc với hai mặt phẳng và là:
	A. 	B. 	C. 	D. 
Câu 46: Trong không gian Oxyz, cho hai mặt phẳng . Viết phương trình đường thẳng (d) giao tuyến của 2 mặt phẳng.
	A. 	B. 
	C. 	D. 
Câu 47: Cho hai đường thẳng 
Viết phương trình tổng quát của mặt phẳng (P) qua (D1) và song song với (D2)
	A. 	B. 
	C. 	D. 
Câu 48: Trong không gian Oxyz, cho điểm và hai mặt phẳng và . Viết phương trình mặt phẳng đi qua A và vuông góc với cả hai mặt phẳng (P) và (Q).
	A. 	B. 
	C. 	D. 
Câu 49: Cho mặt cầu . Viết phương trình giao tuyến của (S) và mặt phẳng (yOz).
	A. 	B. 
	C. 	D. 
Câu 50: Trong không gian Oxyz, cho mặt cầu và mặt phẳng . Khi đó khẳng định nào sau đây đúng?
	A. Mặt phẳng đi qua tâm mặt cầu .
	B. Mặt phẳng tiếp xúc mặt cầu .
	C. Mặt phẳng cắt mặt cầu theo một đường tròn.
	D. Mặt phẳng không cắt mặt cầu .
Đáp án
1-B
2-D
3-A
4-B
5-A
6-A
7-B
8-A
9-B
10-D
11-A
12-D
13-C
14-C
15-B
16-C
17-D
18-C
19-D
20-A
21-C
22-C
23-D
24-A
25-B
26-C
27-C
28-A
29-A
30-C
31-A
32-A
33-A
34-C
35-B
36-C
37-D
38-B
39-C
40-B
41-D
42-A
43-C
44-B
45-A
46-A
47-B
48-D
49-A
50-D
LỜI GIẢI CHI TIẾT
Câu 1: Đáp án B
Khẳng định 1 là khẳng định sai vì nên hàm số không thể là hàm số lẻ.
Khẳng định 3 sai ví dụ xét hàm số , lúc này phương trình có vô số nghiệm.
Khẳng định 2 đúng (C) và luông có phần phía bên phải trục hoành trùng nhau.
Khẳng định 4 đúng, vì chẳng hạn , nên do đó luôn nhận trục tung làm trục đối xứng
Câu 2: Đáp án D
TXĐ: 
x
 0 
y'
 - | | + 0 -
y
Câu 3: Đáp án A
Ta có: 
BBT:
x
 -1 1 
y'
 + 0 - 0 +
y
 CĐ 
 CT 
Dựa vào bảng biến thiên ta thấy B, C, D là sai
Hàm số đạt cực đại tại hai điểm trái dấu nên có hai điểm cực trị nằm về hai phía trục Oy.
Câu 4: Đáp án B
Ở đây ta có hai hướng tìm giá trị nhỏ nhất:
+ Một là dùng bất đẳng thức Cauchy cho hai số dương ta có: 
Dấu “=” xảy ra khi 
+ Hai là tính đạo hàm và vẽ bảng biến thiên và nhận xét
Câu 5: Đáp án A
- 1,2 sai vì còn cần có thêm 
- Khẳng định 3 sai, ví dụ: cho hàm số . Ta thấy nhưng khi vẽ bảng biến thiên ta thấy 0 là điểm cực trị.
Câu 6: Đáp án A
 Không có tiệm cận
 Không có tiệm cận. Suy ra A.
Câu 7: Đáp án B
Bảng biến thiên:
x
y'
 + 0 - - 0 +
y
	CĐ
 CT 
Câu 8: Đáp án A
Câu 9: Đáp án B
 suy ra đường thẳng là TCN.
Đồ thị hàm số có thêm một đường tiệm cận nữa khi phương trình có một nghiệm, suy ra .
Câu 10: Đáp án D
 (đồng biến) 
Câu 11: Đáp án A
Gọi x, l lần lượt là độ dài cạnh ở đáy và chiều cao của hộp .
Khi đó tổng diện tích cần sơn là 
Thể tích của hộp là , suy ra . Từ (1) và (2) suy ra:
Lập bảng biến thiên suy ra . Vậy cạnh ở đáy là 2 (đơn vị chiều dài) và chiều cao của hộp là 1 (đơn vị chiều dài).
Câu 12: Đáp án D
Cách 1: 
Cách 2: Casio 
Câu 13: Đáp án C
Câu 14: Đáp án C
Để hàm số xác định thì cần hai điều kiện: Điều kiện thứ nhất là điều kiện logarit xác định, điều kiện thứ hai là điều kiện căn thức xác định
Nên ta có: 
Câu 15: Đáp án B
Điều kiện: 
	* không thỏa
	* 
Vậy 
Câu 16: Đáp án C
Ta có . Do vậy ta cần biến đổi về 
Ta có:
Câu 17: Đáp án D
Ta có: . Đặt: 
Phương trình (*) trở thành: hoặc (loại)
Với hoặc 
CASIO:
Bước 1: Nhập biểu thức như hình
Bước 2: SHIFT/SOLVE/=
Cho nghiệm 
Loại đáp án A và C
Bước 3: Nhập REPLAY về lại bước 1.
Bước 4: Nhập CALC/1/=
Câu 18: Đáp án C
Cách 1: 
Cách 2: Casio - (đáp án A, B, C, D) C (kết quả bằng 0)
Câu 19: Đáp án D
Ta có: 
Suy ra 
Câu 20: Đáp án A
Thay , sử dụng MTCT
Chú ý chỉ cần thay a bằng một giá trị dương nào đó là đc
Câu 21: Đáp án C
Bài toán này người vay trả cuối tháng nên ta có:
Số tiền mà anh Bách phải trả hàng tháng là: 
Tổng số tiền lãi anh Bách phải trả là: (đồng).
Câu 22: Đáp án C
Có: 
Câu 23: Đáp án D
Chú ý: 
Câu 24: Đáp án A
Đạo hàm của quãng đường theo biến t là vận tốc. Vậy khi có vận tốc, muốn tìm quãng đường chỉ cần lấy nguyên hàm của vận tốc, do đó:
Câu 25: Đáp án B
Ta có: . Đặt 
Câu 26: Đáp án C
Dùng MTCT để kiểm tra
Với phương án A: 
Vậy mệnh đề A sai. Thử tương tự các đáp án khác thấy rằng đáp án C đúng. 
Câu 27: Đáp án C
Các tiếp tuyến của (P) đi qua là: 
Các hoành độ giao điểm lần lượt là 0,2,4
Câu 28: Đáp án A
Câu 29: Đáp án A
Đặt 
Khi đó 
Vậy 
Câu 30: Đáp án C
Ta có suy ra . Khi đó ta được
Câu 31: Đáp án A
Vì điểm biểu diễn z nên 
Do đó 
Câu 32: Đáp án A
Ta có 
Suy ra , nên 
Câu 33: Đáp án A
Giả sử 
Theo đề ta có: 
Câu 34: Đáp án C
Ta có: suy ra . Nên điểm biếu diễn số phức w là điểm có tọa độ 
Câu 35: Đáp án B
Câu 36: Đáp án C
Thể tích khối chóp M.AB’C bằng thể tích khối chóp B’.AMC
Ta có : 
Do đó 
Câu 37: Đáp án D
Câu 38: Đáp án B
Vì 
Mà 
Gọi I là trung điểm của , mà 
Suy ra , vậy 
Câu 39: Đáp án C
Kẻ 
Ta có: 
B
Câu 40: Đáp án B
Sử dụng phương pháp loại trừ rõ ràng A, C, D đúng nên B sai
Câu 41: Đáp án D
Gọi I là trung điểm của AB thì 
. Ta có 
Từ đó , mà 
, và 
Vậy 
Câu 42: Đáp án A
Giả sử đường sinh hình nón có độ dài là a. Gọi G là trọng tâm của tam giác thiết diện, do đó G cách đều 3 đỉnh và 3 cạnh của tam giác thiết diện, nên G là tâm của khối cầu ngoại tiếp và khối cầu nội tiếp khối nón, suy ra bán kính R, r của khối cầu ngoại tiếp và khối cầu nội tiếp khối nón lần lượt là . Gọi , lần lượt là thể tích của khối cầu ngoại tiếp và khối cầu nội tiếp khối nón. Vậy 
Câu 43: Đáp án C
Gọi là giao điểm của đường thẳng AB và mặt phẳng (yOz). Ta có và cùng phương.
Câu 44: Đáp án B
Ta có , suy ra , chọn vectơ pháp tuyến của mặt phẳng (ABC) là . Phương trình mặt phẳng (ABC) là: . Ta có 
Câu 45: Đáp án A
 là hai vectơ pháp tuyến của hai mặt phẳng cho trước.
Chọn làm vectơ pháp tuyến, ta có mặt phẳng có dạng .
Qua M nên: 
Phương trình mặt phẳng cần tìm là: 
Câu 46: Đáp án A
Đường thẳng (d) có VTCP: và đi qua điểm , phương trình đường thẳng (d) là: 
Câu 47: Đáp án B
Hai vectơ chỉ phương của 
Pháp vectơ của (P): 
Câu 48: Đáp án D
VTPT của hai mặt phẳng (P) và (Q) lần lượt là và .
Suy ra . Theo đề suy ra chọn VTPT của mặt phẳng là 
PMP: 
Câu 49: Đáp án A
Phương trình giao tuyến của (S) và mặt phẳng (yOz):
Câu 50: Đáp án D
Mặt cầu (S) có tâm là bán kính . Ta có , suy ra mặt phẳng không cắt mặt cầu (S).

Tài liệu đính kèm:

  • doc10_de_Megabook_Giai_chi_tiet_De_so_2.doc