Bộ đề thi kiểm tra định kỳ môn: Toán 12

doc 9 trang Người đăng minhhieu30 Lượt xem 729Lượt tải 0 Download
Bạn đang xem tài liệu "Bộ đề thi kiểm tra định kỳ môn: Toán 12", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Bộ đề thi kiểm tra định kỳ môn: Toán 12
SỞ GIÁO DỤC & ĐÀO TẠO 
CÂN THƠ
BỘ ĐỀ THI KIỂM TRA ĐỊNH KỲ 
MÔN : TOÁN 12
Thời gian làm bài: 
(109 câu trắc nghiệm)
Họ và tên:.. .......
Lớp: SBD..
Mã đề thi 169
(Thí sinh không được sử dụng tài liệu)
Câu 1: Kết luận nào sau đây về tính đơn điệu của hàm số là đúng?
A. Hàm số đồng biến trên các khoảng (–¥; –1) và (–1; +¥).
B. Hàm số luôn luôn đồng biến trên ;
C. Hàm số nghịch biến trên các khoảng (–¥; –1) và (–1; +¥);
D. Hàm số luôn luôn nghịch biến trên ;
Câu 2: Tìm câu sai trong các mệnh đề sau về GTLN và GTNN của hàm số 
A. Min y = 1	B. Max y = 19
C. Hàm số có GTLN và GTNN	D. Hàm số đạt GTLN khi x = 3
Câu 3: Hai đồ thi hàm số và tiếp xúc nhau khi và chỉ khi :
A. 	B. 	C. 	D. 
Câu 4: Cho hàm số y=-x2-4x+3 có đồ thị (P) .Nếu tiếp tuyến tại điểm M của (P) có hệ số góc bằng 8 thì hoành độ điểm M là
A. 5	B. 6	C. 12	D. -1
Câu 5: Điểm uốn của đồ thị hàm số là I ( a ; b ) , với : a – b =
A. 	B. 	C. 	D. 
Câu 6: Hàm số đồng biến trên các khoảng
A. và (1;2)	B. và 	C. (0;1) và (1;2)	D. và 
Câu 7: Số đường thẳng đi qua điểm A(0;3) và tiếp xúc với đồ thi hàm số y=x4-2x2+3 bằng
A. 0	B. 1	C. 2	D. 3
Câu 8: Hệ số góc của tiếp tuyến của đồ thị hàm số tại điểm giao điểm của đồ thị hàm số với trục tung bằng:
A. -2	B. 2	C. 1	D. -1
Câu 9: Cho hàm số .Tiếp tuyến tại điểm uốn của đồ thị hàm số ,có phương trình là
A. 	B. 	C. 	D. 
Câu 10: Cho hàm số .Khẳng định nào sau đây đúng?
A. Đồ thị hàm số có tiệm cận ngang là 	B. Đồ thị hàm số có tiệm cận đứng là 
C. Đồ thị hàm số không có tiệm cận	D. Đồ thị hàm số có tiệm cận đứng là x= 1
Câu 11: Cho hàm số .Hàm số có
A. một cực tiểu và một cực đại	B. một cực đại và không có cực tiểu
C. một cực tiểu và hai cực đại	D. một cực đại và hai cực tiểu
Câu 12: Cho hàm số y = ln(1+x2) .Tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x=-1,có hệ số góc bằng
A. ln2	B. 0	C. 	D. -1
Câu 13: Số đường tiệm cận của đồ thị hàm số : là :
A. 2	B. 1	C. 4	D. 3
Câu 14: Hàm số nào sau đây là hàm số đồng biến trên R?
A. 	B. 
C. 	D. y=tgx
Câu 15: Số đường tiệm cân của đồ thi hàm số là:
A. 1	B. 2	C. 3	D. 4
Câu 16: Cho hàm số .Đồ thị hàm số có tâm đối xứng là điểm
A. (1;-1)	B. (2;1)	C. (1;2)	D. (-1;1)
Câu 17: Cho hàm số .Hàm số có hai điểm cực trị x1, x2 .Tích x1.x2 bằng
A. -4	B. -5	C. -1	D. -2
Câu 18: Cho hàm số y = f(x)= ax3+bx2+cx+d ,a0 .Khẳng định nào sau đây sai ?
A. Đồ thị hàm số luôn cắt trục hoành	B. Đồ thị hàm số luôn có tâm đối xứng.
C. Hàm số luôn có cực trị	D. 
Câu 19: Điểm cực đại của hàm số : là x =
A. 	B. 	C. 	D. 0
Câu 20: Trong các khẳng định sau về hàm số , khẳng định nào là đúng?
A. Cả A và B đều đúng;	B. Chỉ có A là đúng.
C. Hàm số có điểm cực tiểu là x = 0;	D. Hàm số có hai điểm cực đại là x = ±1;
Câu 21: Đồ thi hàm số có điểm uốn là I ( -2 ; 1) khi :
A. 	B. 	C. 	D. 
Câu 22: Gọi M ,N là giao điểm của đường thẳng y =x+1 và đường cong .Khi đó hoành độ trung điểm I của đoạn thẳng MN bằng
A. 	B. 2	C. 1	D. 
Câu 23: Đồ thi hàm số đạt cực đại tại x = 2 khi :
A. Không tồn tại m	B. m = -1	C. m = 1	D. 
Câu 24: Hàm số đạt cực tiểu tại x = 2 khi :
A. 	B. 	C. 	D. 
Câu 25: Cho hàm số.Giá trị nhỏ nhất của hàm số trên bằng
A. 	B. 0	C. 2	D. 1
Câu 26: Đồ thi hàm số nào sau đây có 3 điểm cực trị :
A. 	B. 	C. 	D. 
Câu 27: Cho hàm số y = –x3 + 3x2 – 3x + 1, mệnh đề nào sau đây là đúng?
A. Hàm số đạt cực tiểu tại x = 1.	B. Hàm số đạt cực đại tại x = 1;
C. Hàm số luôn luôn đồng biến;	D. Hàm số luôn luôn nghịch biến;
Câu 28: Đồ thi hàm số nào sau đây có hình dạng như hình vẽ bên 
A. 	B. 	C. 	D. 
Câu 29: Bảng dưới đây biểu diễn sự biến thiên của hàm số
A. Một hàm số khác.	B. 	C. 	D. 
Câu 30: Trong các hàm số sau , những hàm số nào luôn đồng biến trên từng khoảng xác định của nó : 
A. ( I ) và ( II )	B. Chỉ ( I )	C. ( II ) và ( III )	D. ( I ) và ( III )
Câu 31: Cho hàm số y=3sinx-4sin3x.Giá trị lớn nhất của hàm số trên khoảngbằng
A. 7	B. 3	C. 1	D. -1
Câu 32: Cho hàm số y=x3-3x2+1.Đồ thị hàm số cắt đường thẳng y=m tại 3 điểm phân biệt khi
A. -31	D. m<-3
Câu 33: Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số : .
Thế thì : M.m =
A. 0	B. 25 / 8	C. 2	D. 25 / 4
Câu 34: Cho hàm số .Đồ thi hàm số tiếp xúc với đường thẳng y=2x+m khi
A. 	B. m=	C. 	D. m1
Câu 35: Kết luận nào là đúng về giá trị lớn nhất và giá trị nhỏ nhất của hàm số ?
A. Có giá trị lớn nhất và có giá trị nhỏ nhất
B. Có giá trị lớn nhất và không có giá trị nhỏ nhất
C. Có giá trị nhỏ nhất và không có giá trị lớn nhất
D. Không có giá trị lớn nhất và giá trị nhỏ nhất.
Câu 36: Cho hàm số y=x3-3x2+1.Tích các giá trị cực đại và cực tiểu của đồ thị hàm sốbằng
A. -6	B. -3	C. 0	D. 3
Câu 37: Cho hàm số y=x3-4x.Số giao điểm của đồ thị hàm số và trục Ox bằng
A. 0	B. 2	C. 3	D. 4
Câu 38: Đồ thị của hàm số y=x4-6x2+3 có số điểm uốn bằng
A. 1	B. 2	C. 0	D. 3
Câu 39: Hàm số : nghịch biến khi x thuộc khoảng nào sau đây:
A. 	B. 	C. 	D. 
Câu 40: Cho hàm số y=-x4-2x2-1 .Số giao điểm của đồ thị hàm số với trục Ox bằng
A. 1	B. 3	C. 4	D. 2
Câu 41: Đồ thi hàm số tiếp xúc với trục hoành khi :
A. 	B. 	C. 	D. 
Câu 42: Khẳng định nào sau đây là đúng về đồ thị hàm số :
A. 	B. 	C. 	D. 
Câu 43: Đồ thị hàm số nào dưới đây chỉ có đúng một khoảng lồi
A. y=x-1	B. y=(x-1)2	C. y=x3-3x+1	D. y=-2x4+x2-1
Câu 44: Cho hàm số .Số tiệm cận của đồ thị hàm số bằng
A. 3	B. 2	C. 4	D. 1
Câu 45: Cho hàm số Mệnh đề nào sau đây là sai?
A. thì hàm số có hai điểm cực trị	B. Hàm số luôn luôn có cực đại và cực tiểu
C. thì hàm số có cực đại và cực tiểu	D. thì hàm số có cực trị
Câu 46: Cho hàm số ( C ). Đường thẳng nào sau đây là tiếp tuyến của ( C ) và có hệ số góc nhỏ nhất :
A. 	B. 	C. 	D. 
Câu 47: Biết đồ thị hàm số nhận trục hoành và trục tung làm 2 tiệm cận thì : m + n =
A. 8	B. 6	C. 2	D. - 6
Câu 48: Đường thẳng y = m không cắt đồ thi hàm số khi :
A. 	B. 	C. 	D. 
Câu 49: Hàm số y = xlnx đồng biến trên khoảng nào sau đây :
A. 	B. 	C. 	D. 
Câu 50: Cho hàm số : . Phương trình y’ = 0 có 2 nghiệm x1 , x2 .Khi đó x1 . x2 =
A. 5	B. 8	C. -5	D. -8
Câu 51: Hàm số nghịch biến trên khoảng
A. 	B. 	C. (-1;2)	D. 
Câu 52: Tiếp tuyến của đồ thi hàm số có hệ số góc K= -9 ,có phương trình là:
A. y-16= -9(x +3)	B. y-16= -9(x – 3)	C. y+16 = -9(x + 3)	D. y = -9(x + 3)
Câu 53: Đồ thị của hàm số nào lồi trên khoảng ?
A. y=x4-3x2+2	B. y= 5+x -3x2	C. y=(2x+1)2	D. y=-x3-2x+3
Câu 54: Gọi M là giao điểm của đồ thị hàm số với trục Oy. Phương trình tiếp tuyến với đồ thị trên tại điểm M là :
A. 	B. 	C. 	D. 
Câu 55: Cho hàm số .Toạ độ điểm cực đại của hàm số là
A. (-1;2)	B. (3;)	C. (1;-2)	D. (1;2)
Câu 56: Trên khoảng (0; +¥) thì hàm số :
A. Có giá trị nhỏ nhất là Min y = 3	B. Có giá trị lớn nhất là Max y = –1
C. Có giá trị nhỏ nhất là Min y = –1	D. Có giá trị lớn nhất là Max y = 3
Câu 57: Hàm số nào sau đây có bảng biến thiên như hình bên :
A. 	B. 	C. 	D. 
Câu 58: Hệ số góc của tiếp tuyến của đồ thị hàm số tại điểm có hoành độ 
x0 = - 1 bằng:
A. -2	B. 2	C. 0	D. Đáp số khác
Câu 59: Trong các tiếp tuyến tại các điểm trên đồ thị hàm số , tiếp tuyến có hệ số góc nhỏ nhất bằng :
A. - 3	B. 0	C. - 4	D. 3
Câu 60: Gọi là hoành độ các điểm uốn của đồ thi hàm số thì : 
A. 	B. 	C. 	D. 0
Câu 61: Tiếp tuyến của đồ thi hàm số tại giao điểm của đồ thị hàm số với trục tung phương trình là:
A. y = x - 1	B. y= x + 1	C. y= x	D. y = -x
Câu 62: Trong các mệnh đề sau, hãy tìm mệnh đề sai:
A. Hàm số không có cực trị;
B. Hàm số có hai cực trị.
C. Hàm số y = –x3 + 3x2 – 3 có cực đại và cực tiểu;
D. Hàm số y = x3 + 3x + 1 có cực trị;
Câu 63: Hoành độ tiếp điểm của tiếp tuyến song song với trục hoành của đồ thị hàm số 
 bằng:
A. -1	B. 0	C. 1	D. Đáp số khác
Câu 64: Giá trị lớn nhất của hàm số là :
A. 1	B. -1	C. 1 / 3	D. 3
Câu 65: Khẳng định nào sau đây là đúng về hàm số :
A. Đạt cực tiểu tại x = 0	B. Có cực đại và cực tiểu
C. Có cực đại và không có cực tiểu	D. Không có cực trị.
Câu 66: Trong các khẳng định sau về hàm số , hãy tìm khẳng định đúng?
A. Hàm số đồng biến trên từng khoảng xác định;
B. Hàm số có một điểm cực trị;
C. Hàm số có một điểm cực đại và một điểm cực tiểu;
D. Hàm số nghịch biến trên từng khoảng xác định.
Câu 67: Hàm số có 2 cực trị khi :
A. 	B. 	C. 	D. 
Câu 68: Đồ thi hàm số có điểm cực tiểu là:
A. ( 1 ; 3 )	B. ( -1 ; -1 )	C. ( -1 ; 3 )	D. ( -1 ; 1 )
Câu 69: Số điểm có toạ độ là các số nguyên trên đồ thi hàm số là:
A. 4	B. 2	C. 8	D. 6
Câu 70: Số tiếp tuyến đi qua điểm A ( 1 ; - 6) của đồ thi hàm số là:
A. 1	B. 0	C. 2	D. 3
Câu 71: Hàm số đồng biến trên tập xác định của nó khi :
A. 	B. 	C. 	D. 
Câu 72: Khoảng cách giữa 2 điểm cực trị của đồ thi hàm số bằng :
A. 	B. 	C. 	D. 
Câu 73: Đồ thi hàm số nhận điểm I ( 1 ; 3) là tâm đối xứng khi m =
A. 3	B. 5	C. 1	D. -1
Câu 74: Điểm cực tiểu của hàm số : là x =
A. - 3	B. 3	C. -1	D. 1
Câu 75: Đồ thị hàm số : có 2 điểm cực trị nằm trên đường thẳng 
y = ax + b với : a + b =
A. 2	B. 4	C. - 4	D. - 2
Câu 76: Cho đồ thi hàm số ( C ) . Gọi là hoành độ các điểm M ,N 
trên ( C ), mà tại đó tiếp tuyến của ( C ) vuông góc với đường thẳng y = - x + 2007 . Khi đó 
A. 	B. 	C. 	D. -1
Câu 77: Số giao điểm của đường cong y=x3-2x2+2x+1 và đường thẳng y = 1-x bằng
A. 3	B. 1	C. 0	D. 2
Câu 78: Cho đồ thị hàm số . Khi đó 
A. 6	B. -2	C. -1 / 2	D. 
Câu 79: Đường thẳng y = m cắt đồ thị hàm số tại 3 điểm phân biệt khi :
A. 	B. 	C. 	D. 
Câu 80: Hàm số tăng trên từng khoảng xác định của nó khi :
A. 	B. 	C. 	D. 
Câu 81: Tiếp tuyến của đồ thi hàm số tại điểm có hoành đo x0 = - 1 có phương trình là:
A. y = -x - 3	B. y= -x + 2	C. y= x -1	D. y = x + 2
Câu 82: Tiếp tuyến của đồ thi hàm số tại điểm A(; 1) có phương trình la:
A. 2x – 2y = - 1	B. 2x – 2y = 1	C. 2x +2 y = 3	D. 2x + 2y = -3
Câu 83: Cho hàm số.Giá trị lớn nhất của hàm số bằng
A. 1	B. 2	C. 0	D. 
Câu 84: Khoảng lồi của đồ thị hàm số : là :
A. 	B. 	C. 	D. 
Câu 85: Cho hàm số .Số tiệm cận của đồ thị hàm số bằng
A. 0	B. 3	C. 2	D. 1
Câu 86: Cho hàm số y=-x3+3x2+9x+2; Đồ thị hàm số có tâm đối xứng là điểm
A. (1;14)	B. (1;13)	C. (1;0)	D. ( 1;12)
Câu 87: Tìm kết quả đúng về giá trị cực đại và giá trị cực tiểu của hàm số 
A. yCĐ = –1 và yCT = 9	B. yCĐ = 1 và yCT = –9
C. yCĐ = 9 và yCT = 1	D. yCĐ = 1 và yCT = 9
Câu 88: Cho đồ thị ( C) của hàm số : y = xlnx. Tiếp tuyến của ( C ) tại điểm M vuông góc với đường thẳng y= .Hoành độ của M gần nhất với số nào dưới đây ?
A. 2	B. 4	C. 6	D. 8
Câu 89: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O, SA = a và vuông góc với mặt phẳng đáy. Gọi I, M là trung điểm của SC, AB, khoảng cách từ S tới CM bằng
Câu 90: Cho hình chóp S.ABC đáy ABC là tam giác vuông cân với BA = BC = a, SA = a vuông góc với đáy. Gọi M, N là trung điểm AB và AC. Tính cosin góc giữa hai mặt phẳng (SAC) và (SBC) bằng
Câu 91: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, và vuông góc với đáy. Tính khoảng cách từ A đến mặt phẳng (SBC) bằng
Câu 92: Cho hình lập phương . Gọi M, N là trung điểm của AD, . Tính cosin góc hợp bởi hai đường thẳng MN và bằng
Câu 93: Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng . Tính tang góc giữa hai mặt phẳng (SAB) và (ABCD) theo a bằng
Câu 94: Cho tứ diện ABCD có AD vuông góc với mặt phẳng (ABC), AC = AD = 4, AB = 3, BC = 5. Khoảng cách từ A đến mặt phẳng (BCD) bằng
Câu 95: Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng . Thể tích khối chóp S.ABCD theo a và bằng
Câu 96 : Cho hình lập phương cạnh bằng a. Khoảng cách giữa và bằng
Câu 97 : Cho hình lập phương cạnh bằng a. Gọi M, N, P là trung điểm các cạnh , . Góc giữa MP và bằng
Câu 98 : Cho hình chóp đều S.ABC, cạnh đáy bằng a. Gọi M, N theo thứ tự là trung điểm SB, SC. Biết , diện tích tam giác AMN bằng
Câu 99. Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB = 2a,AD = a.Hình chiếu của S lên (ABCD) là trung điểm H của AB, SC tạo với đáy một góc 45o.Thể tích khối chóp S.ABCD là:
 B. C. D. 
Câu 100: Cho hinh lâp phương ABCD.A’B’C’D’ cạnh a tâm 0. Khi đó thể tích khối tứ diện AA’B’0 là.
Câu 101: Cho biết thể tích của một hình hộp chữ nhật là V, đáy là hình vuông cạnh a. Khi đó diện tích toàn phần của hình hộp bằng
Câu 102: Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, tâm 0.Gọi M và N lần lượt là trung điểm của SA và BC. Biết rằng góc giữa MN và (ABCD) bằng , cosin góc giữa MN và mặt phẳng (SBD) bằng 
Câu 103: Cho hình chóp tam giác có đường cao bằng 100 cm và các cạnh đáy bằng 20 cm, 21 cm, 29 cm. Thể tích của hình chóp đó bằng
Câu 104: Cho hình chóp S.ABC với . Thể tích của hình chóp bằng
Câu 105: Một hình chóp tam giác đều có cạnh bên bằng b và chiều cao h. Khi đó, thể tích của hình chóp bằng
Câu 106: Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, tâm 0.Gọi M và N lần lượt là trung điểm của SA và BC. Biết rằng góc giữa MN và (ABCD) bằng , độ dài đoạn MN bằng 
Câu 107: Cho tứ diện đều ABCD cạnh bằng a, M là trung điểm của CD. Tính cosin góc giữa AC và BM bằng
Câu 108: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, và vuông góc với đáy. Tính khoảng cách từ trọng tâm G của tam giác SAB đến mặt phẳng (SAC) bằng
Câu 109: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O, SA = a và vuông góc với mặt phẳng đáy. Gọi I, M là trung điểm của SC, AB, khoảng cách từ I đến đường thẳng CM bằng
-------------------------------------------
----------- HẾT ----------

Tài liệu đính kèm:

  • docBO_DE_KIEM_TRA_GIUA_HOC_KY_1_NAM_2016.doc