BỘ 20 ĐỀ THI HỌC KÌ 1 (TOÁN 9) CÁC QUẬN TPHCM (NĂM 2013 – 2014) ĐỀ SỐ 1: QUẬN 1, NĂM 2013 – 2014 Bài 1. (2,5 điểm) Tính: . . . Bài 2. (1,5 điểm) Giải các phương trình: . . Bài 3. (1,5 điểm) Cho hàm số y = 2x + 1 có đồ thị là (d1) và hàm số y = – x + 4 có đồ thị là (d2). Vẽ (d1), (d2) trên cùng một mặt phẳng tọa độ. Xác định các hệ số a, b biết đường thẳng (d3): y = ax + b song song với (d1) và (d3) đi qua điểm M(1; – 2) . Bài 4. (1 điểm) Rút gọn biểu thức: (với x > 0; x ≠ 4) . Tìm các giá trị của x nguyên để A nhận giá trị nguyên. Bài 5. (3,5 điểm) Cho A nằm ngoài đường tròn (O; R). Vẽ tiếp tuyến AB với đường tròn (O) (B là tiếp điểm). Vẽ dây cung BC vuông góc với OA tại N. Chứng minh rằng: , rồi suy ra AC là tiếp tuyến của đường tròn (O) . Vẽ đường kính CD của đường tròn (O). Vẽ BK vuông góc với CD tại K. Chứng minh rằng: BD2 = DK.DC. Giả sử: OA = 2R. Tính và chứng minh ∆ABC đều. Gọi M là giao điểm của BK và AD. Chứng minh rằng: CK = 2MN, rồi suy ra: MN < OB. ĐỀ SỐ 2: QUẬN 2, NĂM 2013 – 2014 Bài 1: (3 điểm) Thực hiện phép tính: . . . . Bài 2: (2 điểm) Cho đường thẳng (d1): y = 2x – 3 và đường thẳng (d2): y = – x + 3. Vẽ (d1); (d2) trên cùng mặt phẳng tọa độ Oxy. Tìm tọa độ giao điểm A của (d1); (d2) bằng phép toán. Xác định các hệ số a và b của đường thẳng (d3): y = ax + b (a ≠ 0) biết (d3) song song với (d1) và (d3) cắt (d2) tại một điểm trên trục tung. Bài 3: (1,5 điểm) Rút gọn các biểu thức sau: với x ≥ 3. . Bài 4: (1 điểm) Cho ∆ABC vuông tại A biết và BC = 24cm. Tính số đo góc C, độ dài AB, AC (độ dài cạnh làm tròn đến chữ số thập phân thứ nhất) . Bài 5: (2,5 điểm) Từ điểm A ở ngoài đường tròn (O; R) vẽ hai tiếp tuyến AB, AC đến (O) (B, C là các tiếp điểm) . Chứng minh: OA vuông góc với BC tại H. Vẽ đường thẳng vuông góc với OB tại O cắt cạnh AC tại E. Chứng minh: ∆OAE là tam giác cân. Trên tia đối của tia BC lấy điểm Q. Vẽ hai tiếp tuyến QM, QN đến (O) (M, N là tiếp tuyến). Chứng minh: 3 điểm A, M, N thẳng hàng. ĐỀ SỐ 3: QUẬN 3, NĂM 2013 – 2014 Bài 1: (3 điểm) Rút gọn các biểu thức sau: . . . Bài 2: (2,5 điểm) Trong mặt phẳng tọa độ Oxy cho hàm số y = 2x – 3 có đồ thị là đường thẳng (d1) và hàm số có đồ thị là đường thẳng (d2) . Vẽ đồ thị (d1); (d2) trên cùng hệ trục tọa độ. Tìm tọa độ giao điểm A của (d1); (d2) bằng phép toán. Cho đường thẳng (d3): y = (2m – 1)x + 3 – m (). Tìm m để (d1); (d2); (d3) đồng quy. Bài 3: (1 điểm) Cho biểu thức: (với x ≥ 0; x ≠ 16). Rút gọn biểu thức P. Bài 4: (3,5 điểm) Cho (O; R) đường kính AB. Gọi C là điểm thuộc đường tròn (O) sao cho AC > BC. Chứng minh: ∆ABC vuông. Tiếp tuyến tại A và C của (O) cắt nhau tại D. Chứng minh: OD AC. Gọi H là giao điểm của OD và AC. Chứng minh: 4.HO.HD = AC2. Qua O vẽ đường thẳng vuông góc với BD tại K cắt tia AC tại M. Chứng minh: MB là tiếp tuyến của đường tròn (O) .
Tài liệu đính kèm: