Bài tập Thể tích khối đa diện (Có đáp án)

doc 29 trang Người đăng duyenlinhkn2 Ngày đăng 07/07/2022 Lượt xem 393Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Bài tập Thể tích khối đa diện (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Bài tập Thể tích khối đa diện (Có đáp án)
 BÀI TẬP THỂ TÍCH KHỐI ĐA DIỆN 
 I. NHẬN BIẾT
Câu 1: Trong các mệnh đề sau, mệnh đề nào sai?
A. Hình lập phương là đa điện lồi
B. Tứ diện là đa diện lồi
C. Hình hộp là đa diện lồi
D. Hình tạo bởi hai tứ diện đều ghép với nhau là một đa diện lồi
Câu 2: Khối đa diện đều loại {4;3} có số đỉnh là: A. 4	 B. 6	C. 8	 D. 10
Câu 3: Khối đa diện đều loại {3;4} có số cạnh là: A. 14	B. 12	C. 10	 D. 8
Câu 4: Khối mười hai mặt đều thuộc loại A. {5, 3} B. {3, 5}	C. {4, 3} D. {3, 4}
Câu 5: Hình bát diện đều thuộc loại khối đa diện đều nào sau đây 
 A. B. C. D. 
Câu 6: Khối lập phương là khối đa diện đều loại: A. {5;3} B. {3;4} C. {4;3} D. {3;5}
Câu 7: Khối đa diện đều loại {5;3} có số mặt là: A. 14	 B. 12	 C. 10	 D. 8
Câu 8: Có bao nhiêu loại khối đa diện đều? A. 3 B.5 C.20 D.Vô số
Câu 9: Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Thập nhị diện đều B. Nhị thập diện đều C. Bát diện đều D. Tứ diện đều
Câu 10: Kim Tự Tháp ở Ai Cập có hình dáng của khối đa diện nào sau đây
A. Khối chóp tam giác đều B. Khối chóp tứ giác C. Khối chóp tam giác D. Khối chóp tứ giác đều 
Câu 11: Mỗi đỉnh của bát diện đều là đỉnh chung của bao nhiêu cạnh? A. 3 B.5 C.8 D.4
Câu 12 Mỗi đỉnh của nhị thập diện đều là đỉnh chung của bao nhiêu cạnh? A. 20 B. 12 C. 8 D.5
Câu 13: Số cạnh của một bát diện đều là: A . 12 B. 8 C. 10 D.16
Câu 14: Số đỉnh của hình mười hai mặt đều là : A . 20 B. 12 C. 18 D.30
Câu 15: Số cạnh của hình mười hai mặt đều là: A . 30 B. 12 C. 18 D.20
Câu 16: Thể tích khối chóp có diện tích đáy B và chiều cao h là:
A. B. C. D. 
Câu 17: Khối chóp đều S.ABCD có mặt đáy là:
A. Hình bình hành B. Hình chữ nhật C. Hình thoi D. Hình vuông
Câu 18: Số mặt phẳng đối xứng của hình lập phương là: A. 6. B. 7. C. 8. D. 9.
Câu 19: Số mặt phẳng đối xứng của hình bát diện đều là: A. 3. B. 6. C. 9. D. 12.
Câu 20: Số mặt phẳng đối xứng của khối tứ diện đều là: A. 1 B. 2 C. 6 D. 3
Câu 21: Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành 
A. Một tứ diện đều và bốn hình chóp tam giác giác đều B. Năm tứ diện đều
C. Bốn tứ diện đều và một hình chóp tam giác đều 
D. Năm hình chóp tam giác giác đều, không có tứ diện đều
Câu 22: Số cạnh của một khối chóp bất kì luôn là
A. Một số chẵn lớn hơn hoặc bằng 4 B. Một số lẻ 
C. Một số chẵn lớn hơn hoặc bằng 6 D. Một số lẻ lớn hơn hoặc bằng 5 
Câu 23: Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất:
A. Hai mặt. B. Ba mặt. C. Bốn mặt. D. Năm mặt.
Câu 24: Trong các mệnh đề sau mệnh đề nào sai ?
A. Lắp ghép hai khối hộp sẽ được một khối đa diện lồi B.Khối hộp là khối đa diện lồi
C.Khối tứ diện là khối đa diện lồi D. Khối lăng trụ tam giác là khối đa diện lồi
Câu 25: Số mặt của một khối lập phương là: A. 4	B. 6	 C. 8	 D.10 
Câu 26: Khối đa điện nào sau đây có công thức tính thể tích là (B là diện tích đáy ; h là chiều cao) A. Khối lăng trụ B. Khối chóp C. Khối lập phương D. Khối hộp chữ nhật
Câu 27: Thể tích của khối chóp có diện tích đáy B và chiều cao h là 
A. 	B. 	C. 	D. 
Câu 28: Thể tích của khối lăng trụ có diện tích đáy B và chiều cao h là 
A. 	B. 	C. 	D. 
Câu 29: Cho một khối chóp có thể tích bằng . Khi giảm diện tích đa giác đáy xuống lần thì thể tích khối chóp lúc đó bằng: A. 	B. 	 C. 	 D. 
Câu 30: Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ: A. tăng 2 lần	B. tăng 4 lần	C. tăng 6 lần D. tăng 8 lần 
Câu 31: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Biết và . Thể tích của khối chóp S.ABCD là: A. 	B. 	C. 	D. 
 Câu 32: Cho khối tứ diện ABCD. Lấy một điểm M nằm giữa A và B, một điểm N nằm giữa C và D. Bằng hai mặt phẳng và ta chia khối tứ diện đã cho thành bốn khối tứ diện:
A. AMCN, AMND, AMCD, BMCN B. AMCD, AMND, BMCN, BMND
C. AMCD, AMND, BMCN, BMND D. BMCD, BMND, AMCN, AMDN
Câu 33: Thể tích của chóp tam giác đều có tất cả các cạnh đều bằng là:	
A. B. C. D. 
Câu 34: Cho hình lăng trụ đều ABC.A’B’C’ có cạnh đáy bằng , cạnh bên bằng . Thể tích của khối lăng trụ là: A. B. C. D. 
Câu 35: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a . SA(ABC) và . Thể
 tích khối chóp S.ABC là A. B. C. D. 
Câu 36: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a . SA(ABCD) và a. Thể tích khối chóp S.ABCD là : A. B. C. D.
Câu 37: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B biết . SA(ABC) và . Thể tích khối chóp S.ABC là : A. B. C. D. 
Câu 38: Cho hình lăng trụ tam giác đều có các cạnh đều bằng a .Thể tích khối lăng trụ đều là:
A. B. C. D. 
Câu 39: Phép đối xứng qua mặt phẳng (P) biến đường thẳng d thành đường thẳng d’ cắt d khi và chỉ khi:
A. d cắt (P). B. d nằm trên (P). 
C. d cắt (P) nhưng không vuông góc với (P ) D. d song với (P).
 II. THÔNG HIỂU 
Câu 1. Cho khối chóp có tam giác vuông tại , Tính thể tích khối chóp biết rằng 
A. 	B. 	C. 	D. 
Câu 2. Cho khối chóp có đáy là tam giác đều cạnh . Hai mặt bên và cùng vuông góc với đáy. Tính thể tích khối chóp biết 
A. 	B. 	C. 	D. 
Câu 3. Cho hình chóp SABC có SB = SC = BC = CA = a . Hai mặt (ABC) và (ASC) cùng vuông góc với (SBC). Tính thể tích hình chóp .
A. 	B. 	C. 	D. 
Câu 4. Cho hình chóp SA BC có đáy ABC là tam giác vuông cân tại B với AC = a biết SA vuông góc với đáy ABC và SB hợp với đáy một góc 60o. Tính thể tích hình chóp
A. 	B. 	C. 	D. 
Câu 5. Cho hình chóp SABC có đáy ABC là tam giác đều cạnh a biết SA vuông góc với đáy ABC và (SBC) hợp với đáy (ABC) một góc 60o. Tính thể tích hình chóp
A. 	B. 	C. 	D. 
Câu 6 Cho hình chóp SABCD có đáy ABCD là hình vuông có cạnh a và SA vuông góc đáy ABCD và mặt bên (SCD) hợp với đáy một góc 60o. Tính thể tích hình chóp SA BCD
A. 	B. 	C. 	D. 
Câu 7. Cho khối chóp có đay là hình chữa nhật tâm , vuông góc với đáy. Tính thể tích khối chóp biết 
A. 	B. 	C. 	D. 
Câu 8. Cho khối chóp có đáy là hình vuông cạnh . Hai mặt phẳng cùng vuông góc với đáy. Tính thể tích khối chóp biết 
A. 	B. 	C. 	D. 
Câu 9. Cho khối chóp có đáy là hình chữ nhật . Gọi là trung điểm của , biết . Tính thể tích khối chóp biết .
A. 	B. 	C. 	D. 
Câu 10. Cho khối chóp có đáy là hình vuông cạnh . Gọi là trung điểm cạnh biết . Tính thể tích khối chóp biết tam giác đều
 A. 	B. 	C. 	D. 
Câu 11. Cho khối chóp SABC có đáy ABC là tam giác cân tại a với BC = 2a , , biết và mặt (SBC) hợp với đáy một góc 45o . Tính thể tích khối chóp SABC
A. 	B. 	C. 	D. 
Câu 12. Cho khối chóp SABCD có đáy ABCD là hình vuông biết SA (ABCD),SC = a và SC hợp với đáy một góc 60o Tính thể tích khối chóp
A. 	B. 	C. 	D. 
Câu 13. Cho khối chóp SABCD có đáy ABCD là hình chữ nhật biết rằng SA (ABCD) , SC hợp với đáy một góc 45o và AB = 3a , BC = 4a. Tính thể tích khối chóp
A. 	B. 	C. 	D. 
Câu 14 Cho khối chóp SABCD có đáy ABCD là hình thoi cạnh a và góc nhọn a bằng 60o và SA (ABCD) 
Biết rằng khoảng cách từ a đến cạnh SC = a.Tính thể tích khối chóp SABCD
A. 	B. 	C. 	D. 
Câu 15. Cho khối chóp SABCD có đáy ABCD là hình thang vuông tại a và B biết AB = BC = a , AD = 2a , 
SA (ABCD) và (SCD) hợp với đáy một góc 60o Tính thể thích khối chóp SABCD. 	
A. 	B. 	C. 	D. 
Câu 16. Cho khối chóp SABCD có đáy ABCD là nửa lục giác đều nội tiếp trong nửa đường tròn đường kính AB = 2R biết (SBC) hợp với đáy ABCD một góc 45o.Tính thể tích khối chóp SABCD
A. 	B. 	C. 	D. 
Câu 17. Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh a. Mặt bên SAB là tam giác đều nằm trong mặt phẳng vuông góc với đáyABCD. Tính thể tích khối chóp S.ABCD.
A. 	B. 	C. 	D. 
Câu 18. Cho tứ diện ABCD có ABC là tam giác đều ,BCD là tam giác vuông cân tại D , (ABC)(BCD) và AD hợp với (BCD) một góc 60o .Tính thể tích tứ diện ABCD.
A. 	B. 	C. 	D.
Câu 19. Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, có BC = a. Mặt bên SAC vuông góc với đáy, các mặt bên còn lại đều tạo với mặt đáy một góc 450.Tính thể tích khối chóp SABC
A. 	B. 	C. 	D. 
Câu 20. Cho hình chóp SABC có đáy ABC vuông cân tại a với AB = AC = a biết tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với (ABC) ,mặt phẳng (SAC) hợp với (ABC) một góc 45o. Tính thể tích của SABC.
A. 	B. 	C. 	D. 
Câu 21. Cho hình chóp SABC có ; SBC là tam giác đều cạnh a và (SAB) (ABC). Tính thể tích khối chóp SABC. 
A. 	B. 	C. 	D.
Câu 22.Cho hình chóp SABCD có ABCD là hình chữ nhật , SAB đều cạnh a nằm trong mặt phẳng vuông góc với (ABCD) biết (SAC) hợp với (ABCD) một góc 30o .Tính thể tích hình chóp SABCD
A. 	B. 	C. 	D. 
Câu 23. Cho hình chóp SABCD có ABCD là hình chữ nhật có AB = 2a , BC = 4a, SAB (ABCD) , hai mặt bên (SBC) và (SAD) cùng hợp với đáy ABCD một góc 30o .Tính thể tích hình chóp SABCD
A. 	B. 	C. 	D. 
Câu 24. Cho hình chóp SABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và SAD vuông cân tại S , nằm trong mặt phẳng vuông góc với ABCD. Tính thể tích hình chóp SABCD. 
A. 	B. 	C. 	D. 
Câu 25. Cho hình chóp SABCD có đáy ABCD là hình thang vuông tại a và D; AD = CD = a ; AB = 2a,SAB đều nằm trong mặt phẳng vuông góc với (ABCD). Tính thể tích khối chóp SABCD .
A. 	B. 	C. 	D. 
Câu 26. Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông tại A, AC=a, . Đường chéo BC’ của mặt bên (BCC’B’) tạo với mặt phẳng (AA’C’C) một góc . Tính thể tích của khối lăng trụ theo a
A. 	B. 	C. 	D. 
Câu 27 .Cho hình chóp S.ABCD có đáy là hình thoi, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Biết AC=2a, BD=3a. tính khoảng cách giữa hai đường thẳng AD và SC
A. 	B. 	C. 	D. 
Câu 28. Cho hình chóp đều S.ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy góc . Mặt phẳng (P) chứa AB và đi qua trọng tâm G của tam giác SAC cắt SC, SD lần lượt tại M,N. Tính theo a thể tích khối chóp S.ABMN.
A. 	B. 	C. 	D. 
Câu 29.Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của A’ xuống (ABC) là trung điểm của AB. Mặt bên (ACC’A’) tạo với đáy góc . Tính thể tích khối lăng trụ này 
A. 	B. 	C. 	D. 
Câu 30. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành với AB=a, AD=2a, , SA vuông góc với đáy, góc giữa SC và đáy bằng . Thể tích khối chóp S.ABCD là V. Tỷ số là
A. 	B. 	C. 	D. 
Câu 31. Cho hình chóp S.ABCD. Lấy một điểm M thuộc miền trong tam giác SBC. Lấy một điểm N thuộc miền trong tam giác SCD. Thiết diện của hình chóp S.ABCD với (AMN) là
A. Hình tam giác	B. Hình tứ giác	C. Hình ngũ giác	D. Hình lục giác
Câu 32. Cho hình chóp S.ABC có đáy là tam giác vuông cân tại C, cạnh SA vuông góc với mặt đáy , biết AB=2a, SB=3a. Thể tích khối chóp S.ABC là V. Tỷ số có giá trị là.
A. 	B. 	C. 	D. 
Câu 33.Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm I và có cạnh bằng a, góc . Gọi H là trung điểm của IB và SH vuông góc với (ABCD). Góc giữa SC và (ABCD) bằng . Tính thể tích khối chóp S.AHCD.
A.	B. 	C. 	D. 
Câu 34. Cho hình chóp S.ABC có đáy là tam giác cân tại A, AB=AC=a, . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Tính theo a thể tích khối chóp S.ABC
A. 	B. 	C. 	D. 
Câu 35.Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, hình chiếu vuông góc H của S lên mặt (ABCD) là trung điểm của đoạn AB. Gọi K là trung điểm của AD. Tính khoảng cách giữa hai đường SD và HK theo a
A. 	B. 	C. 	D. 
Câu 36. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa mặt bên và đáy bằng . M,N là trung điểm của cạnh SD, DC. Tính theo a thể tích khối chóp M.ABC.
A. 	B. 	C. 	D. 
Câu 37. Cho chóp tam giác đều SABC cạnh đáy bằng a và cạnh bên bằng 2a. Chứng minh rằng chân đường cao kẻ từ S của hình chóp là tâm của tam giác đều ABC.Tính thể tích chóp đều SABC
A. 	B. 	C. 	D. 
Câu 38. Cho khối chóp tứ giác SABCD có tất cả các cạnh có độ dài bằng a . Tính thể tích khối chóp SABCD
A. 	B. 	C. 	D. 
Câu 39. Cho khối tứ diện đều ABCD cạnh bằng a, M là trung điểm DC. Tính khoảng cách từ M đến mp(ABC).
A. 	B. 	C. 	D. 
Câu 40. Cho hình chóp tam giác đều SABC có cạnh bên a, góc ở đáy của mặt bên là 45o.Tính thể tích hình chóp SABC. 
A. 	B. 	C. 	D. 
Câu 41. Cho hình chóp tam giác đều SABC có cạnh đáy a và mặt bên hợp với đáy một góc 60o. Tính thể tích hình chóp SABC
A. 	B. 	C. 	D. 
Câu 42. Cho hình chóp tam giác đều có đường cao h và mặt bên có góc ở đỉnh bằng 60o. 
Tính thể tích hình chóp.
A. 	B. 	C. 	D. 
Câu 43. Cho hình chóp tứ giác đều SABCD có cạnh đáy a và . Tính thể tích hình chóp
A. 	B. 	C. 	D. 
Câu 44. Cho hình chóp tứ giác đều có mặt bên hợp với đáy một góc 45o và khoảng cách từ chân đường cao của chóp đến mặt bên bằng a.Tính thể tích hình chóp
A. 	B. 	C. 	D. 
Câu 45. Cho hình chóp SABCD có tất cả các cạnh bằng nhau. Chứng minh rằng SABCD là chóp tứ giác đều.Tính cạnh của hình chóp này khi thể tích của nó bằng 
A. 	B. 	C. 	D. 
Câu 46. Cho khối chóp tứ giác đều SABCD. Một mặt phẳng qua A, B và trung điểm M của SC . Tính tỉ số thể tích của hai phần khối chóp bị phân chia bởi mặt phẳng đó
A. 	B. 	C. 	D. 1
Câu 47. Cho hình chóp tứ giác đều S.ABCD, đáy là hình vuông cạnh a, cạnh bên tạo với đáy góc . Gọi M là trung điểm SC. Mặt phẳng đi qua AM và song song với BD, cắt SB tại E và cắt SD tại F. Tính thể tích khối chóp S.AEMF 
A. 	B. 	C. 	D. 
Câu 48. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc đáy, . Gọi B’, D’ là hình chiếu của A lần lượt lên SB, SD. Mặt phẳng (AB’D’) cắt SC tại C’.Tính thể tích khối chóp S.AB’C’D’
A. 	B. 	C. 	D. 
Câu 49. Cho hình chóp SABCD có đáy ABCD là hình bình hành và I là trung điểm của SC.Mặt phẳng qua AI và song song với BD chia hình chóp thành 2 phần.Tính tỉ số thể tích 2 phần này
A. 1 	B. 	C. 	D. 
Câu 50. Cho hình chóp SABCD có đáy ABCD là hình bình hành và lấy M trên SA sao cho Tìm x để mặt phẳng (MBC) chia hình chóp thành 2 phần có thể tích bằng nhau
A. 	B. 	C. 	D. 
Câu 51. Cho hình chóp tứ giác S.ABCD có thể tích bằng V. Lấy điểm A’ trên cạnh SA sao cho . Mặt phẳng qua A’ và song song với đáy của hình chóp cắt các cạnh SB, SC, SD lần lượt tại B’, C’, D’. Khi đó thể tích khối chóp S.A’B’C’D’ bằng
A. 	B. 	 	D. 
Câu 52. Đáy của lăng trụ đứng tam giác ABC.A’B’C’ là tam giác ABC vuông cân tại A có cạnh BC = a và biết A'B = 3a. Tính thể tích khối lăng trụ
A. 	B. 	C. 	D. 
Câu 53. Cho lăng trụ tứ giác đều ABCD.A’B’C’D' có cạnh bên bằng 4a và đường chéo 5a. Tính thể tích khối lăng trụ này
A. 	B. 	C. 	D. 
Câu 54. Đáy của lăng trụ đứng tam giác ABC.A’B’C’ là tam giác đều cạnh a = 4 và biết diện tích tam giác A’BC bằng 8. Tính thể tích khối lăng trụ
A. 	B. 	C. 	D. 
Câu 55. Cho hình hộp đứng có đáy là hình thoi cạnh a và có góc nhọn bằng 600 Đường chéo lớn của đáy bằng đường chéo nhỏ của lăng trụ. Tính thể tích hình hộp
A. 	B. 	C. 	D. 
Câu 56. Một tấm bìa hình vuông có cạnh 44 cm, người ta cắt bỏ đi ở mỗi góc tấm bìa một hình vuông cạnh 12 cm rồi gấp lại thành một cái hộp chữ nhật không có nắp. Tính thể tích cái hộp này
A. 	B. 	C. 	D. 
Câu 57. Cho lăng trụ đứng ABCD.A'B'C'D' có đáy là tứ giác đều cạnh a biết rằng . Tính thể tích của lăng trụ
A. 	B. 	C. 	D. 
Câu 58. Lăng trụ đứng tứ giác có đáy là hình thoi mà các đường chéo là 6cm và 8cm biết rằng chu vi đáy bằng 2 lần chiều cao lăng trụ.Tính thể tích
A. 	B. 	C. 	D. 
Câu 59. Cho lăng trụ đứng tứ giác đều có tất cả các cạnh bằng nhau và biết tổng diện tích các mặt của lăng trụ bằng 96 cm2 .Tính thể tích lăng trụ
A. 	B. 	C. 	D. 
Câu 60. Cho lăng trụ đứng tam giác ABC A'B'C' có đáy ABC là tam giác vuông cân tại B với BA = BC = a ,biết A'B hợp với đáy ABC một góc 600 . Tính thể tích lăng trụ
A. 	B. 	C. 	D. 
 III. VẬN DỤNG
Câu 1 Cho lăng trụ có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm lên mặt phẳng trùng với trọng tâm tam giác . Biết khoảng cách giữa hai đường thẳng và bằng . Khi đó thể tích của khối lăng trụ là A. 	B. C. 	D. 
Câu 2: Tổng diện tích các mặt của một hình lập phương bằng 96 cm.Thể tích của khối lập phương đó là: A . 64 cm B. 84 cm C. 48 cm D. 91 cm
Câu 3: Cho hình chóp tam giác đều có cạnh đáy bằng a và cạnh bên tạo với đáy một góc . Thể tích của khối chóp đó bằn A . B. C. D. 
Câu 4: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B. Biết SA ^ (ABC), AB = a, , góc giữa (SBC) và (ABC) bằng . Thể tích của khối chóp S.ABC là:
A. B. C. D. 
Câu5: Cho hình chóp đều S.ABCD có cạnh bên và cạnh đáy đều bằng a. Thể tích của khối chóp S.ABCD là: A. B. C. D. 
Câu 6: Cho ABCD.A’B’C’D’ là hình lập phương có cạnh . Thể tích của tứ diện ACD’B’ bằng bao nhiêu ? A. 	B. 	 C. 	D. 
Câu 7: Một lăng trụ tam giác ABC.A’B’C’ có đáy là tam giác đều ABC cạnh . Cạnh bên bằng b và hợp với mặt đáy góc . Thể tích hình chóp .BCC’B’ bằng bao nhiêu ?
A. 	B. 	C. 	D. 
Câu 8: Cho khối chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D; biết , . Góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 600. Gọi I là trung điểm của AD, biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD). Thể tích khối chóp S.ABCD là:
 A. 	B. 	C. 	 D. 
Câu 9: 
Người ta muốn xây một bồn chứa nước dạng khối hộp chữ nhật trong một phòng tắm. Biết chiều dài, chiều rộng, chiều cao của khối hộp đó lần lượt là 5m, 1m, 2m ( hình vẽ bên). Biết mỗi viên gạch có chiều dài 20cm, chiều rộng 10cm, chiều cao 5cm. Hỏi người ta sử dụng ít nhất bao nhiêu viên gạch để xây bồn đó và thể tích thực của bồn chứa bao nhiêu lít nước? (Giả sử lượng xi măng và cát không đáng kể )
A. B. C. D. 
Câu 10: Xét hình chóp S.ABCD với M, N, P, Q lần lượt là các điểm trên SA, SB, SC, SD sao cho . Tỉ số thể tích của khối tứ diện SMNP với SABC là:
A. . B. . C. . D. .
Câu 11: Khối chóp S.ABCD có thể tích là V. Gọi M, N lần lượt là trung điểm của SC, SD. Thể tích của khối chóp S.ABMN là: A. B. C. D. 
Câu 12: 
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. M và N theo thứ tự là trung điểm của SA và SB. Tỉ số thể tích  là: A. B. C. D. 
Câu 13: 
Cho một tứ diện đều có chiều cao h. Ở ba góc của tứ diện người ta cắt đi các tứ diện đều bằng nhau có chiều cao x để khối đa diện còn lại có thể tích bằng một nửa thể tích tứ diện đều ban đầu (hình bên dưới). Giá trị của x là bao nhiêu?
A. B. C. D. 
Câu 14: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên (SAB) là tam giác đều và vuông góc với đáy.Thể tích hình chóp S.ABCD là
A. B. C. D.
Câu 15: Cho hình lăng trụ đứngcó đáylà tam giác vuông tại. Đường chéocủa mặt bên tạo với mặt phẳng một góc . Tính thể tích của khối lăng trụ theo . A. B. C. D. 
Câu 16: Cho hình chópcó đáylà hình chữ nhật có. Haivà cùng vuông góc với mặt phẳng đáy, cạnhhợp với đáy một góc. Tính thể tích khối chóptheo. A. B. C. D. 
Câu 17: Cho hình chóp có đáy là tam giác vuông cân tại , . Gọi là trung điểm , tam giác cân tại và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp , biết góc giữa và mặt phẳng đáy bằng .
A. B. C. D. 
Câu18: Hình chópcó, đáylà tam giác vuông tạilà tam giác vuông cân tạivà nằm trong mặt phẳng vuông góc với mặt đáy. Gọilà trung điểm cạnh. Biếthợp vớimột góc. Tính thể tích khối chóp.
A. B. C. D. 
Câu 19: Cho hình chópcó đáylà hình vuông cạnh, và mặt bên hợp với mặt phẳng đáymột góc. Tính khoảng cách từ điểmđến .
A. B. C. D. 
Câu 20: Hình chópcó đáylà tam giác vuông tại,. Biết . Tính khoảng cách từđến
A. B. C. D. 
Câu21 : Cho hình chópcó đáy là vuông cân ở. Gọi là trọng tâm của , đi quavà song song vớicắtlần lượt tại. Tính thể tích khối chóp. A. B. C. D. 
Câu 22: Cho hình chópcó đáy làđều cạnhvà,. Gọilần lượt là hình chiếu vuông góc của điểmlần lượt lên cạnh. Tính thể tích khối theo.
A. B. C. D. 
Câu 23: Cho hình chóp đều , biết hình chóp này có chiều cao bằng và độ dài cạnh bên bằng . Tính thể tích khối chóp 
A. B. C. D. 	
BÀI TẬP MẶT TRÒN XOAY-KHỐI TRÒN XOAY
Câu 1 : Cho hình chữ nhật ABCD cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD. Cho hình chữ nhật quay quanh MN, ta được hình trụ tròn xoay có thể tích bằng
A) V = 4π	B) V = 8π
C) V = 16π	D) V = 32π
Câu 2 : Cho hình chữ nhật ABCD có AB = 2AD = 2. Quay hình chữ nhật ABCD lần lượt quanh AD và AB, ta được 2 hình trụ tròn xoay có thể tích V1, V2. Hệ thức nào sau đây là đúng?
A) V1 = V2	B) V2 = 2V1
C) V1 = 2V2	D) 2V1 = 3V2
Câu 3 : Một hình chữ nhật ABCD có AB = a và = α ( 00 < α < 900). Cho hình chữ nhật đó quay quanh cạnh AB, tam giác ABC tạo thành h

Tài liệu đính kèm:

  • docbai_tap_the_tich_khoi_da_dien_co_dap_an.doc