Bài tập mệnh đề Toán học

doc 2 trang Người đăng minhphuc19 Lượt xem 811Lượt tải 1 Download
Bạn đang xem tài liệu "Bài tập mệnh đề Toán học", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Bài tập mệnh đề Toán học
Bài tập mệnh đề toán học
Bài 1: Xét tính đúng sai của các mệnh đề sau:
Phương trình có hai nghiệm phân biệt.
2k là số chẵn. (k là số nguyên bất kì)
211 – 1 chia hết cho 11.
Bài 2: Cho tứ giác ABDC: Xét hai mệnh đề
P: Tứ giác ABCD là hình vuông.
Q: Tứ giác ABCD là hình chữ nhật có hai đường chéo bằng vuông góc với nhau.
Hãy phát biểu mệnh đề P Û Q bằng hai cách khác nhau, xét tính đúng sai của các mệnh đề đó.
Bài 3: Cho mệnh đề chứa biến P(n) : n2 – 1 chia hết cho 4 với n là số nguyên. Xét tính đúng sai của mệnh đề khi n = 5 và n = 2.
Bài 4: Nêu mệnh đề phủ định của các mệnh đề sau:
a) là bộ của 3;
b) , x2 – x + 1 > 0;
c) $x Î Q, x2 = 3;
d) $n Î N, 2n +1 là số nguyên tố;
e) , 2n ³ n + 2.
Bài 5: Xét tính đúng sai và nêu mệnh đề phủ định của các mệnh đề:
Tứ giác ABCD là hình chữ nhật.
16 là số chính phương.
, 
Bài 6: Cho tứ giác ABCD và hai mệnh đề: 
P: Tổng 2 góc đối của tứ giác bằng 1800; 
Q: Tứ giác nội tiếp được đường tròn.
Hãy phát biểu mệnh đề kéo theo P Þ Q và xét tính đúng sai của mệnh đề này.
Bài 7: Cho hai mệnh đề
P: 2k là số chẵn.
Q: k là số nguyên
Hãy phát biểu mệnh đề kéo theo và xét tính đúng sai của mệnh đề.
Bài 8: Hoàn thành mệnh đề đúng: 
Tam giác ABC vuông tại A nếu và chỉ nếu .
- Viết lại mệnh đề dưới dạng một mệnh đề tương đương.
Bài 9: Xét tính đúng sai của các mệnh đề và viết mệnh đề phủ định của các mệnh đề.
a) , (x-1)2 ¹ x -1;
b) $n Î N, n(n +1) là một số chính phương;
c) $x Î R, x2 + 5x – 6 = 0.
d) $n Î N, n2 +1 không chia hết cho 4.
Bài 10: Xét tính đúng sai của các suy luận sau: (mệnh đề kéo theo)
x2 = 4 Þ x = 2; 	2) x2 = 4 Û x = 2; 	3) ;
4) 	5) ; 	6) ; 
7) 	8) 
Bài 11: Phát biểu điều kiện cần và đủ để một:
Tam giác là tam giác cân.
Tam giác là tam giác đều.
Tam giác là tam giác vuông cân.
Tam giác đồng dạng với tam giác khác cho trước.
Phương trình bậc 2 có hai nghiệm phân biệt.
Phương trình bậc 2 có nghiệm kép.
Số tự nhiên chia hết cho 2; cho 3; cho 5; cho 6; cho 9 và cho 11.
Bài 12: Chứng mình rằng: Với hai số dương a, b thì 
Bài 13: Xét tính đúng sai của mệnh đề: 
Nếu một số tự nhiên chia hết cho 15 thì chia hết cho cả 3 và 5.
Bài 14: Phát biểu và chứng minh định lí sau:
a) n là số tự nhiên, n2 chia hết cho 3 thì n cũng chia hết cho 3.
b) n là số tự nhiên, n2 chia hết cho 6 thì n cũng chia hết cho cả 6; 3 và 2.
(Chứng minh bằng phản chứng)

Tài liệu đính kèm:

  • docbai-tap-menh-de-toan-hoc-lop-10.doc