Bài tập Hình học 11 chương III

doc 3 trang Người đăng minhphuc19 Lượt xem 661Lượt tải 0 Download
Bạn đang xem tài liệu "Bài tập Hình học 11 chương III", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Bài tập Hình học 11 chương III
BÀI TẬP HÌNH HỌC 11 CHƯƠNG III
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , SA vuông góc với đáy ,
 SA = a.
Chứng minh rằng các mặt bên hình chóp là những tam giác vuông.
CMR (SAC) (SBD) .
Tính góc giữa SC và mp ( SAB ) .
Tính góc giữa hai mặt phẳng ( SBD ) và ( ABCD)
Tính d(A, (SCD)) .
Cho hình chóp S. ABC có đáy ABC là tam giác vuông tại C và SB (ABC), biết AC = a, BC = a, SB = 3a.
Chứng minh: AC (SBC)
Gọi BH là đường cao của tam giác SBC. Chứng minh: SA BH.
Tính góc giữa đường thẳng SA và mặt phẳng (ABC)
Hình chóp S.ABC. DABC vuông tại A, góc = 600 , AB = a, hai mặt bên (SAB) và (SBC) vuông góc với đáy; SB = 2a. Hạ BH ^ SA (H Î SA); BK ^ SC (K Î SC).
a) CM: SB ^ (ABC)
b) CM: mp(BHK) ^ SC.
c) CM: DBHK vuông .
d) Tính cosin của góc tạo bởi SA và (BHK).
Cho hình chóp tứ giác đều S.ABCD, cạnh đáy bằng a, cạnh bên bằng . Gọi O là tâm của hình vuông ABCD. Và M là trung điểm của SC.
Chứng minh: (MBD) (SAC)
Tính góc giữa SA và mp(ABCD) .
Tính góc giữa hai mặt phẳng ( MBD) và (ABCD).
Tính góc giữa hai mặt phẳng ( SAB) và (ABCD)
Cho hình lăng trụ ABC.A¢B¢C¢ có AA¢ ^ (ABC) và AA¢ = a, đáy ABC là tam giác vuông tại A có BC = 2a, AB = a.
a) Tính khoảng cách từ AA¢ đến mặt phẳng (BCC¢B¢).
b) Tính khoảng cách từ A đến (A¢BC).
c) Chứng minh rằng AB ^ (ACC¢A¢) và tính khoảng cách từ A¢ đến mặt phẳng (ABC¢).
Hình chóp S.ABC. DABC vuông tại A, góc = 600 , AB = a, hai mặt bên (SAB) và (SBC) vuông góc với đáy; SB = 2a. Hạ BH ^ SA (H Î SA); BK ^ SC (K Î SC).
a) CM: SB ^ (ABC)
b) CM: mp(BHK) ^ SC.
c) CM: DBHK vuông .
d) Tính cosin của góc tạo bởi SA và (BHK).
Cho hình chóp tứ giác đều S.ABCD, cạnh đáy bằng a, cạnh bên bằng . Gọi O là tâm của hình vuông ABCD. Và M là trung điểm của SC.
a) Chứng minh: (MBD) (SAC)
b) Tính góc giữa SA và mp(ABCD) .
c) Tính góc giữa hai mặt phẳng ( MBD) và (ABCD).
d) Tính góc giữa hai mặt phẳng ( SAB) và (ABCD)
Cho hình lăng trụ ABC.A¢B¢C¢ có AA¢ ^ (ABC) và AA¢ = a, đáy ABC là tam giác vuông tại A có BC = 2a, AB = a.
a) Tính khoảng cách từ AA¢ đến mặt phẳng (BCC¢B¢).
b) Tính khoảng cách từ A đến (A¢BC).
c) Chứng minh rằng AB ^ (ACC¢A¢) và tính khoảng cách từ A¢ đến mặt phẳng (ABC¢).
Bài 9. Cho hình chóp S.ABCD có đáy là hình chữ nhật, tâm O và AB = SA = a, BC = , SA (ABCD) 
a. Chứng minh các mặt bên của hình chóp là những tam giác vuông.
b. Gọi I là trung điểm của SC. Chứng minh IO(ABCD)
c. Tính góc giữa SC và (ABCD).
Bài 10. Cho hình chóp S.ABCD có đáy là hình vuông tâm O cạnh bằng 1 và các cạnh bên bằng nhau và bằng .
a. Chứng minh (SBD) (SAC)
b. Tính độ dài đường cao của hình chóp.
c. Tính góc giữa cạnh bên và mặt đáy.
Bài 11. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tâm tại A, SA = AB = AC = a ,
SA (ABC)
a. Gọi I là trung điểm BC. Chứng minh BC (SAI)
b. Tính SI
c. Tính góc giữa (SBC) và mặt đáy.
Bài 12. Cho hình chóp S.ABCD có đáy là hình vuông, tâm O và SA (ABCD) . Gọi H, K lần lượt là hình chiếu vuông góc của A lên SB, SD.
a. Chứng minh BC (SAB), BD (SAC)
b. Chứng minh AK (SCD)
b. Chứng minh SC (AHK)
c. Chứng minh HK (SAC)
Bài 13. Cho hình chóp S.ABCD có đáy là hình thoi, tâm O và SA = SC, SB = SD. 
a. Chứng minh SO (ABCD)
b. Gọi I, K lần lượt là trung điểm của AB và BC. Chứng minh IKSD
Bài 14. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, tâm O, SA = a và SA (ABCD) 
a. Tính khoảng cách từ A đến (SBD).
b. Chứng minh (SBC) (SAB)
c. Tính khoảng cách từ C đến (SBD).
Bài 15. Cho hình chóp tam giác đều S.ABC có cạnh bên bằng a, SA = a, SA vuông góc với cạnh BC, khoảng cách từ S đến cạnh BC là a.Gọi M trung điểm BC.
a) CMR: BC vuông góc với (SAM)
b) Tính chiều cao của hình chóp
c) Dựng và tính đoạn vuông góc chung của SA và BC.
Bài 16. Tứ diện S.ABC có góc ABC = 1v, AB = 2a, BC = , SA vuông góc với (ABC), SA = 2a.Gọi M là trung điểm của AB.
a)Tính góc giữa (SBC) và (ABC).
b)Tính đường cao AK của tam giác AMC
c)Tính góc giữa (SMC) và (ABC).
d)Tính khoảng cách từ A đến (SMC)
HẾT

Tài liệu đính kèm:

  • dochinh_hoc_11.doc