1 80 BÀI TẬP HÌNH HỌC LỚP 9 Bài 1. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M,N,P. Chứng minh rằng: 1. Tứ giác CEHD, nội tiếp . 2. Bốn điểm B,C,E,F cùng nằm trên một đường tròn. 3. AE.AC = AH.AD; AD.BC = BE.AC. 4. H và M đối xứng nhau qua BC. 5. Xác định tâm đường tròn nội tiếp tam giác DEF. Lời giải: 1. Xét tứ giác CEHD ta có: CEH = 900 ( Vì BE là đường cao) CDH = 900 ( Vì AD là đường cao) => CEH + CDH = 1800 H ( ( 2 - - 2 1 1 1 P N F E M D C B A O Mà CEH và CDH là hai góc đối của tứ giác CEHD , Do đó CEHD là tứ giác nội tiếp 2. Theo giả thiết: BE là đường cao => BE AC => BEC = 900. CF là đường cao => CF AB => BFC = 900. Như vậy E và F cùng nhìn BC dưới một góc 900 => E và F cùng nằm trên đường tròn đường kính BC. Vậy bốn điểm B,C,E,F cùng nằm trên một đường tròn. 3. Xét hai tam giác AEH và ADC ta có: AEH = ADC = 900 ; Â là góc chung => AEH ADC => AC AH AD AE => AE.AC = AH.AD. * Xét hai tam giác BEC và ADC ta có: BEC = ADC = 900 ; C là góc chung => BEC ADC => AC BC AD BE => AD.BC = BE.AC. 4. Ta có C1 = A1 ( vì cùng phụ với góc ABC) C2 = A1 ( vì là hai góc nội tiếp cùng chắn cung BM) => C1 = C2 => CB là tia phân giác của góc HCM; lại có CB HM => CHM cân tại C => CB cũng là đương trung trực của HM vậy H và M đối xứng nhau qua BC. 5. Theo chứng minh trên bốn điểm B,C,E,F cùng nằm trên một đường tròn => C1 = E1 ( vì là hai góc nội tiếp cùng chắn cung BF) Cũng theo chứng minh trên CEHD là tứ giác nội tiếp C1 = E2 ( vì là hai góc nội tiếp cùng chắn cung HD) E1 = E2 => EB là tia phân giác của góc FED. Chứng minh tương tự ta cũng có FC là tia phân giác của góc DFE mà BE và CF cắt nhau tại H do đó H là tâm đường tròn nội tiếp tam giác DEF. 2 Bài 2. Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE. 1. Chứng minh tứ giác CEHD nội tiếp . 2. Bốn điểm A, E, D, B cùng nằm trên một đường tròn. 3. Chứng minh ED = 2 1 BC. 4. Chứng minh DE là tiếp tuyến của đường tròn (O). 5. Tính độ dài DE biết DH = 2 Cm, AH = 6 Cm. Lời giải: 1. Xét tứ giác CEHD ta có: CEH = 900 ( Vì BE là đường cao) H 1 3 2 1 1 O E D C B A CDH = 900 ( Vì AD là đường cao) => CEH + CDH = 1800 Mà CEH và CDH là hai góc đối của tứ giác CEHD , Do đó CEHD là tứ giác nội tiếp 2. Theo giả thiết: BE là đường cao => BE AC => BEA = 900. AD là đường cao => AD BC => BDA = 900. Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB. Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn. 3. Theo giả thiết tam giác ABC cân tại A có AD là đường cao nên cũng là đường trung tuyến => D là trung điểm của BC. Theo trên ta có BEC = 900 . Vậy tam giác BEC vuông tại E có ED là trung tuyến => DE = 2 1 BC. 4. Vì O là tâm đường tròn ngoại tiếp tam giác AHE nên O là trung điểm của AH => OA = OE => tam giác AOE cân tại O => E1 = A1 (1). Theo trên DE = 2 1 BC => tam giác DBE cân tại D => E3 = B1 (2) Mà B1 = A1 ( vì cùng phụ với góc ACB) => E1 = E3 => E1 + E2 = E2 + E3 Mà E1 + E2 = BEA = 90 0 => E2 + E3 = 90 0 = OED => DE OE tại E. Vậy DE là tiếp tuyến của đường tròn (O) tại E. 5. Theo giả thiết AH = 6 Cm => OH = OE = 3 cm.; DH = 2 Cm => OD = 5 cm. Áp dụng định lí Pitago cho tam giác OED vuông tại E ta có ED2 = OD2 – OE2 ED2 = 52 – 32 ED = 4cm Bài 3 Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax , By lần lượt ở C và D. Các đường thẳng AD và BC cắt nhau tại N. 1. Chứng minh AC + BD = CD. 2. Chứng minh COD = 900. 3.Chứng minh AC. BD = 4 2AB . 4.Chứng minh OC // BM 3 5.Chứng minh AB là tiếp tuyến của đường tròn đường kính CD. 5.Chứng minh MN AB. 6.Xác định vị trí của M để chu vi tứ giác ACDB đạt giá trị nhỏ nhất. Lời giải: / / y x N C D I M B O A 1. Theo tính chất hai tiếp tuyến cắt nhau ta có: CA = CM; DB = DM => AC + BD = CM + DM. Mà CM + DM = CD => AC + BD = CD 2. Theo tính chất hai tiếp tuyến cắt nhau ta có: OC là tia phân giác của góc AOM; OD là tia phân giác của góc BOM, mà AOM và BOM là hai góc kề bù => COD = 900. 3. Theo trên COD = 900 nên tam giác COD vuông tại O có OM CD ( OM là tiếp tuyến ). Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ta có OM2 = CM. DM, Mà OM = R; CA = CM; DB = DM => AC. BD =R 2 => AC. BD = 4 2AB . 4. Theo trên COD = 900 nên OC OD .(1) Theo tính chất hai tiếp tuyến cắt nhau ta có: DB = DM; lại có OM = OB =R => OD là trung trực của BM => BM OD .(2). Từ (1) Và (2) => OC // BM ( Vì cùng vuông góc với OD). 5. Gọi I là trung điểm của CD ta có I là tâm đường tròn ngoại tiếp tam giác COD đường kính CD có IO là bán kính. Theo tính chất tiếp tuyến ta có AC AB; BD AB => AC // BD => tứ giác ACDB là hình thang. Lại có I là trung điểm của CD; O là trung điểm của AB => IO là đường trung bình của hình thang ACDB IO // AC , mà AC AB => IO AB tại O => AB là tiếp tuyến tại O của đường tròn đường kính CD 6. Theo trên AC // BD => BD AC BN CN , mà CA = CM; DB = DM nên suy ra DM CM BN CN => MN // BD mà BD AB => MN AB. 7. ( HD): Ta có chu vi tứ giác ACDB = AB + AC + CD + BD mà AC + BD = CD nên suy ra chu vi tứ giác ACDB = AB + 2CD mà AB không đổi nên chu vi tứ giác ACDB nhỏ nhất khi CD nhỏ nhất , mà CD nhỏ nhất khi CD là khoảng cách giữ Ax và By tức là CD vuông góc với Ax và By. Khi đó CD // AB => M phải là trung điểm của cung AB. Bài 4 Cho tam giác cân ABC (AB = AC), I là tâm đường tròn nội tiếp, K là tâm đường tròn bàng tiếp góc A , O là trung điểm của IK. 1. Chứng minh B, C, I, K cùng nằm trên một đường tròn. 2. Chứng minh AC là tiếp tuyến của đường tròn (O). 3. Tính bán kính đường tròn (O) Biết AB = AC = 20 Cm, BC = 24 Cm. Lời giải: (HD) 1. Vì I là tâm đường tròn nội tiếp, K là tâm đường tròn bàng tiếp góc A nên BI và BK là hai tia phân giác của hai góc kề bù đỉnh B 4 Do đó BI BK hayIBK = 900 . Tương tự ta cũng có ICK = 900 như vậy B và C cùng nằm trên đường tròn đường kính IK do đó B, C, I, K cùng nằm trên một đường tròn. 2. Ta có C1 = C2 (1) ( vì CI là phân giác của góc ACH. C2 + I1 = 90 0 (2) ( vì IHC = 900 ). hoctoancapba.com o 1 2 1 H I C A B K I1 = ICO (3) ( vì tam giác OIC cân tại O) Từ (1), (2) , (3) => C1 + ICO = 90 0 hay AC OC. Vậy AC là tiếp tuyến của đường tròn (O). 3. Từ giả thiết AB = AC = 20 Cm, BC = 24 Cm => CH = 12 cm. AH 2 = AC 2 – HC2 => AH = 22 1220 = 16 ( cm) CH 2 = AH.OH => OH = 16 1222 AH CH = 9 (cm) OC = 225129 2222 HCOH = 15 (cm) Bài 5 Cho đường tròn (O; R), từ một điểm A trên (O) kẻ tiếp tuyến d với (O). Trên đường thẳng d lấy điểm M bất kì ( M khác A) kẻ cát tuyến MNP và gọi K là trung điểm của NP, kẻ tiếp tuyến MB (B là tiếp điểm). Kẻ AC MB, BD MA, gọi H là giao điểm của AC và BD, I là giao điểm của OM và AB. 1. Chứng minh tứ giác AMBO nội tiếp. 2. Chứng minh năm điểm O, K, A, M, B cùng nằm trên một đường tròn . 3. Chứng minh OI.OM = R2; OI. IM = IA2. 4. Chứng minh OAHB là hình thoi. 5. Chứng minh ba điểm O, H, M thẳng hàng. 6. Tìm quỹ tích của điểm H khi M di chuyển trên đường thẳng d Lời giải: 1. (HS tự làm). 2. Vì K là trung điểm NP nên OK NP ( quan hệ đường kính d H I K N P M D C B A O Và dây cung) => OKM = 900. Theo tính chất tiếp tuyến ta có OAM = 900; OBM = 900. như vậy K, A, B cùng nhìn OM dưới một góc 900 nên cùng nằm trên đường tròn đường kính OM. Vậy năm điểm O, K, A, M, B cùng nằm trên một đường tròn. 3. Ta có MA = MB ( t/c hai tiếp tuyến cắt nhau); OA = OB = R => OM là trung trực của AB => OM AB tại I . Theo tính chất tiếp tuyến ta có OAM = 900 nên tam giác OAM vuông tại A có AI là đường cao. 5 Áp dụng hệ thức giữa cạnh và đường cao => OI.OM = OA2 hay OI.OM = R2; và OI. IM = IA 2 . 4. Ta có OB MB (tính chất tiếp tuyến) ; AC MB (gt) => OB // AC hay OB // AH. OA MA (tính chất tiếp tuyến) ; BD MA (gt) => OA // BD hay OA // BH. => Tứ giác OAHB là hình bình hành; lại có OA = OB (=R) => OAHB là hình thoi. 5. Theo trên OAHB là hình thoi. => OH AB; cũng theo trên OM AB => O, H, M thẳng hàng( Vì qua O chỉ có một đường thẳng vuông góc với AB). 6. (HD) Theo trên OAHB là hình thoi. => AH = AO = R. Vậy khi M di động trên d thì H cũng di động nhưng luôn cách A cố định một khoảng bằng R. Do đó quỹ tích của điểm H khi M di chuyển trên đường thẳng d là nửa đường tròn tâm A bán kính AH = R Bài 6 hoctoancapba.com Cho tam giác ABC vuông ở A, đường cao AH. Vẽ đường tròn tâm A bán kính AH. Gọi HD là đường kính của đường tròn (A; AH). Tiếp tuyến của đường tròn tại D cắt CA ở E. 1. Chứng minh tam giác BEC cân. 2. Gọi I là hình chiếu của A trên BE, Chứng minh rằng AI = AH. 3. Chứng minh rằng BE là tiếp tuyến của đường tròn (A; AH). 4. Chứng minh BE = BH + DE. Lời giải: (HD) 1. AHC = ADE (g.c.g) => ED = HC (1) và AE = AC (2). Vì AB CE (gt), do đó AB vừa là đường cao vừa là đường trung tuyến của BEC => BEC là tam giác cân. => B1 = B2 2 1 I E H D C A B 2. Hai tam giác vuông ABI và ABH có cạnh huyền AB chung, B1 = B2 => AHB = AIB => AI = AH. 3. AI = AH và BE AI tại I => BE là tiếp tuyến của (A; AH) tại I. 4. DE = IE và BI = BH => BE = BI+IE = BH + ED Bài 7 Cho đường tròn (O; R) đường kính AB. Kẻ tiếp tuyến Ax và lấy trên tiếp tuyến đó một điểm P sao cho AP > R, từ P kẻ tiếp tuyến tiếp xúc với (O) tại M. 1. Chứng minh rằng tứ giác APMO nội tiếp được một đường tròn. 2. Chứng minh BM // OP. 3. Đường thẳng vuông góc với AB ở O cắt tia BM tại N. Chứng minh tứ giác OBNP là hình bình hành. 4. Biết AN cắt OP tại K, PM cắt ON tại I; PN và OM kéo dài cắt nhau tại J. Chứng minh I, J, K thẳng hàng. Lời giải: 1. (HS tự làm). 2.Ta có é ABM nội tiếp chắn cung AM; é AOM là góc ở tâm chắn cung AM => é ABM = 2 AOM (1) OP là tia phân giác é AOM ( t/c hai tiếp tuyến cắt nhau ) => é AOP = 2 AOM (2) Từ (1) và (2) => é ABM = é AOP (3) 6 X ( ( 2 1 1 1 K I J M N P A B O Mà é ABM và é AOP là hai góc đồng vị nên suy ra BM // OP. (4) 3.Xét hai tam giác AOP và OBN ta có : éPAO=90 0 (vì PA là tiếp tuyến ); éNOB = 900 (gt NOAB). => éPAO = éNOB = 90 0 ; OA = OB = R; éAOP = éOBN (theo (3)) => AOP = OBN => OP = BN (5) Từ (4) và (5) => OBNP là hình bình hành ( vì có hai cạnh đối song song và bằng nhau). 4. Tứ giác OBNP là hình bình hành => PN // OB hay PJ // AB, mà ON AB => ON PJ Ta cũng có PM OJ ( PM là tiếp tuyến ), mà ON và PM cắt nhau tại I nên I là trực tâm tam giác POJ. (6) Dễ thấy tứ giác AONP là hình chữ nhật vì có éPAO = éAON = éONP = 900 => K là trung điểm của PO ( t/c đường chéo hình chữ nhật). (6) AONP là hình chữ nhật => éAPO = é NOP ( so le) (7) Theo t/c hai tiếp tuyến cắt nhau Ta có PO là tia phân giác éAPM => éAPO = éMPO (8). Từ (7) và (8) => IPO cân tại I có IK là trung tuyến đông thời là đường cao => IK PO. (9) Từ (6) và (9) => I, J, K thẳng hàng. Bài 8 Cho nửa đường tròn tâm O đường kính AB và điểm M bất kì trên nửa đường tròn ( M khác A,B). Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ tiếp tuyến Ax. Tia BM cắt Ax tại I; tia phân giác của góc IAM cắt nửa đường tròn tại E; cắt tia BM tại F tia BE cắt Ax tại H, cắt AM tại K. 1) Chứng minh rằng: EFMK là tứ giác nội tiếp. 2) Chứng minh rằng: AI2 = IM . IB. 3) Chứng minh BAF là tam giác cân. 4) Chứng minh rằng : Tứ giác AKFH là hình thoi. 5) Xác định vị trí M để tứ giác AKFI nội tiếp được một đường tròn. Lời giải: 1. Ta có : éAMB = 90 0 ( nội tiếp chắn nửa đường tròn ) => éKMF = 90 0 (vì là hai góc kề bù). éAEB = 90 0 ( nội tiếp chắn nửa đường tròn ) => éKEF = 90 0 (vì là hai góc kề bù). => éKMF + éKEF = 180 0 . Mà éKMF và éKEF là hai góc đối của tứ giác EFMK do đó EFMK là tứ giác nội tiếp. 7 X 2 1 2 1 E K I H F M B O A 2. Ta có éIAB = 900 ( vì AI là tiếp tuyến ) => AIB vuông tại A có AM IB ( theo trên). Áp dụng hệ thức giữa cạnh và đường cao => AI2 = IM . IB. 3. Theo giả thiết AE là tia phân giác góc IAM => éIAE = éMAE => AE = ME (lí do ) => éABE =éMBE ( hai góc nội tiếp chắn hai cung bằng nhau) => BE là tia phân giác góc ABF. (1) Theo trên ta có éAEB = 90 0 => BE AF hay BE là đường cao của tam giác ABF (2). Từ (1) và (2) => BAF là tam giác cân. tại B . 4. BAF là tam giác cân. tại B có BE là đường cao nên đồng thời là đương trung tuyến => E là trung điểm của AF. (3) Từ BE AF => AF HK (4), theo trên AE là tia phân giác góc IAM hay AE là tia phân giác éHAK (5) Từ (4) và (5) => HAK là tam giác cân. tại A có AE là đường cao nên đồng thời là đương trung tuyến => E là trung điểm của HK. (6). Từ (3) , (4) và (6) => AKFH là hình thoi ( vì có hai đường chéo vuông góc với nhau tại trung điểm của mỗi đường). 5. (HD). Theo trên AKFH là hình thoi => HA // FK hay IA // FK => tứ giác AKFI là hình thang. Để tứ giác AKFI nội tiếp được một đường tròn thì AKFI phải là hình thang cân. AKFI là hình thang cân khi M là trung điểm của cung AB. Thật vậy: M là trung điểm của cung AB => éABM = éMAI = 450 (t/c góc nội tiếp ). (7) Tam giác ABI vuông tại A có éABI = 450 => éAIB = 450 .(8) Từ (7) và (8) => éIAK = éAIF = 450 => AKFI là hình thang cân (hình thang có hai góc đáy bằng nhau). Vậy khi M là trung điểm của cung AB thì tứ giác AKFI nội tiếp được một đường tròn. Bài 9 Cho nửa đường tròn (O; R) đường kính AB. Kẻ tiếp tuyến Bx và lấy hai điểm C và D thuộc nửa đường tròn. Các tia AC và AD cắt Bx lần lượt ở E, F (F ở giữa B và E). 1. Chứng minh AC. AE không đổi. 2. Chứng minh ABD = DFB. 3. Chứng minh rằng CEFD là tứ giác nội tiếp. Lời giải: 8 1. C thuộc nửa đường tròn nên ACB = 900 ( nội tiếp chắn nửa đường tròn ) => BC AE. ABE = 900 ( Bx là tiếp tuyến ) => tam giác ABE vuông tại B có BC là đường cao => AC. AE = AB2 (hệ thức giữa cạnh và đường cao ), mà AB là đường kính nên AB = 2R không đổi do đó AC. AE không đổi. 2. ADB có ADB = 900 ( nội tiếp chắn nửa đường tròn ). => ABD + BAD = 900 (vì tổng ba góc của một tam giác bằng 180 0 )(1) ABF có ABF = 900 ( BF là tiếp tuyến ). => AFB + BAF = 900 (vì tổng ba góc của một tam giác bằng 1800) (2) Từ (1) và (2) => ABD = DFB ( cùng phụ với BAD) D C A O B F E X 3. Tứ giác ACDB nội tiếp (O) => ABD + ACD = 1800 . ECD + ACD = 1800 ( Vì là hai góc kề bù) => ECD = ABD ( cùng bù với ACD). Theo trên ABD = DFB => ECD = DFB. Mà EFD + DFB = 1800 ( Vì là hai góc kề bù) nên suy ra ECD + EFD = 1800, mặt khác ECD và EFD là hai góc đối của tứ giác CDFE do đó tứ giác CEFD là tứ giác nội tiếp. Bài 10 Cho đường tròn tâm O đường kính AB và điểm M bất kì trên nửa đường tròn sao cho AM < MB. Gọi M’ là điểm đối xứng của M qua AB và S là giao điểm của hai tia BM, M’A. Gọi P là chân đường vuông góc từ S đến AB. 1.Gọi S’ là giao điểm của MA và SP. Chứng minh rằng ∆ PS’M cân. 2.Chứng minh PM là tiếp tuyến của đường tròn . Lời giải: 1. Ta có SP AB (gt) => SPA = 900 ; AMB = 900 ( nội tiếp chắn nửa đường tròn ) => AMS = 900 . Như vậy P và M cùng nhìn AS dưới một góc bằng 900 nên cùng nằm trên đường tròn đường kính AS. Vậy bốn điểm A, M, S, P cùng nằm trên một đường tròn. 2. Vì M’đối xứng M qua AB mà M nằm trên đường tròn nên M’ cũng nằm trên đường tròn => hai cung AM và AM’ có số đo bằng nhau 3 ( ) 4 3 1 1 ) ( 1 2 2 1 1 H O S' M' M A B S P => AMM’ = AM’M ( Hai góc nội tiếp chắn hai cung bằng nhau) (1) Cũng vì M’đối xứng M qua AB nên MM’ AB tại H => MM’// SS’ ( cùng vuông góc với AB) => AMM’ = AS’S; AM’M = ASS’ (vì so le trong) (2). => Từ (1) và (2) => AS’S = ASS’. Theo trên bốn điểm A, M, S, P cùng nằm trên một đ/ tròn => ASP=AMP (nội tiếp cùng chắn AP ) => AS’P = AMP => tam giác PMS’ cân tại P. 9 3. Tam giác SPB vuông tại P; tam giác SMS’ vuông tại M => B1 = S’1 (cùng phụ với S). (3) Tam giác PMS’ cân tại P => S’1 = M1 (4) Tam giác OBM cân tại O ( vì có OM = OB =R) => B1 = M3 (5). Từ (3), (4) và (5) => M1 = M3 => M1 + M2 = M3 + M2 mà M3 + M2 = AMB = 90 0 nên suy ra M1 + M2 = PMO = 90 0 => PM OM tại M => PM là tiếp tuyến của đường tròn tại M Bài 11. Cho tam giác ABC (AB = AC). Cạnh AB, BC, CA tiếp xúc với đường tròn (O) tại các điểm D, E, F . BF cắt (O) tại I , DI cắt BC tại M. Chứng minh : 1. Tam giác DEF có ba góc nhọn. 2. DF // BC. 3. Tứ giác BDFC nội tiếp. 4. CF BM CB BD Lời giải: 1. (HD) Theo t/c hai tiếp tuyến cắt nhau ta có AD = AF => tam giác ADF cân tại A => ADF = AFD sđ cung DF DEF < 90 0 ( vì góc DEF nội tiếp chắn cung DE). Chứng minh tương tự ta có DFE < 900; EDF < 900. Như vậy tam giác DEF có ba góc nhọn. 2. Ta có AB = AC (gt); AD = AF (theo trên) => AD AF AB AC => DF // BC. 3. DF // BC => BDFC là hình thang lại có B = C (vì tam giác ABC cân) => BDFC là hình thang cân do đó BDFC nội tiếp được một đường tròn . M I O F E D C B A 4. Xét hai tam giác BDM và CBF Ta có DBM = BCF ( hai góc đáy của tam giác cân). BDM = BFD (nội tiếp cùng chắn cung DI); CBF = BFD (vì so le) => BDM = CBF . => BDM CBF => CF BM CB BD Bài 12 Cho đường tròn (O) bán kính R có hai đường kính AB và CD vuông góc với nhau. Trên đoạn thẳng AB lấy điểm M (M khác O). CM cắt (O) tại N. Đường thẳng vuông góc với AB tại M cắt tiếp tuyến tại N của đường tròn ở P. Chứng minh : 1. Tứ giác OMNP nội tiếp. 2. Tứ giác CMPO là hình bình hành. 3. CM. CN không phụ thuộc vào vị trí của điểm M. 4. Khi M di chuyển trên đoạn thẳng AB thì P chạy trên đoạn thẳng cố định nào. Lời giải: 1. Ta có OMP = 900 ( vì PM AB ); ONP = 90 0 (vì NP là tiếp tuyến ). Như vậy M và N cùng nhìn OP dưới một góc bằng 900 => M và N cùng nằm trên đường 10 tròn đường kính OP => Tứ giác OMNP nội tiếp. 2. Tứ giác OMNP nội tiếp => OPM = ONM (nội tiếp chắn cung OM) Tam giác ONC cân tại O vì có ON = OC = R => ONC = OCN B' A' O P N M D B A C => OPM = OCM. Xét hai tam giác OMC và MOP ta có MOC = OMP = 900; OPM = OCM => CMO = POM lại có MO là cạnh chung => OMC = MOP => OC = MP. (1) Theo giả thiết Ta có CD AB; PM AB => CO//PM (2). Từ (1) và (2) => Tứ giác CMPO là hình bình hành. 3. Xét hai tam giác OMC và NDC ta có MOC = 900 ( gt CD AB); DNC = 900 (nội tiếp chắn nửa đường tròn ) => MOC =DNC = 900 lại có C là góc chung => OMC NDC => CM CO CD CN => CM. CN = CO.CD mà CO = R; CD = 2R nên CO.CD = 2R 2 không đổi => CM.CN =2R 2 không đổi hay tích CM. CN không phụ thuộc vào vị trí của điểm M. 4. ( HD) Dễ thấy OMC = DPO (c.g.c) => ODP = 900 => P chạy trên đường thẳng cố định vuông góc với CD tại D. Vì M chỉ chạy trên đoạn thẳng AB nên P chỉ chạy trên doạn thẳng A’ B’ song song và bằng AB. Bài 13 Cho tam giác A
Tài liệu đính kèm: