5 Đề thi tuyển sinh Lớp 10 THPT môn Toán

doc 14 trang Người đăng duyenlinhkn2 Ngày đăng 10/12/2024 Lượt xem 63Lượt tải 0 Download
Bạn đang xem tài liệu "5 Đề thi tuyển sinh Lớp 10 THPT môn Toán", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
5 Đề thi tuyển sinh Lớp 10 THPT môn Toán
ĐỀ THI TUYỂN SINH LỚP 10 THPT MÔN TOÁN
ĐỀ 1
Bài 1: Cho biểu thức víi b vµ .
a, Rút gọn M. b, Tìm giá trị của M nếu b = 9
Bài 2: Cho hàm số 
 a) Tìm điều kiện của m để hàm số luôn luôn đồng biến.
 b) Tìm điều kiện của m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 3
 c) Chứng minh rằng đồ thị hàm số luôn luôn đi qua 1 điểm cố định với mọi giá trị của m
 Bài 3: Một xe máy đi từ A đến B trong một thời gian dự định. Nếu vận tốc tăng thêm 15 km/h thì đến B sớm 1 giờ,nếu xe giảm vận tốc đi 15 km/h thì đến B muộn 2 giờ.Tính quãng đường AB
Bài 4: Cho tam giác ABC vuông ở A, đường cao AH. Vẽ đường tròn tâm A bán kính AH. Gọi HD là đường kính của đường tròn (A; AH).Tiếp tuyến của đường tròn tại D cắt CA ở E
Chứng minh tam giác BEC cân.
Gọi I là hình chiếu của A trên BE, Chứng minh rằng AI = AH.
Chứng minh rằng BE là tiếp tuyến của đường tròn (A; AH).
Chứng minh BE = BH + DE.
Bài 5: Cho x, y thỏa mãn: . 
 Tìm giá trị nhỏ nhất của biểu thức: 
Đề 2
Bài 1: Rút gọn biểu thức: P = với x và x 1
Bài 2: Cho hàm số 
a) Tìm m để đồ thị hàm số (*) cắt trục tung tại điểm có tung độ bằng – 3.
b) Tìm m để đồ thị hàm số (*) song song với đường thẳng y = -2x + 1
c) Tìm m để đồ thị hàm số (*) vuông góc với đường thẳng y = 2x -3
 Bài 3: Tìm 1 số tự nhiên có 2 chữ số, biết rằng chữ số hàng đơn vị lớn hơn chữ số hàng chục là 4 và nếu đổi chỗ 2 chữ số cho nhau thì được số mới bằng số ban đầu.
Bài 4: Cho nửa đường tròn tâm O đường kính AB và điểm M bất kì trên nửa đường tròn ( M khác A,B). Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ tiếp tuyến Ax. Tia BM cắt Ax tại I; tia phân giác của góc IAM cắt nửa đường tròn tại E; cắt tia BM tại F tia BE cắt Ax tại H, cắt AM tại K.
1) Chứng minh rằng: EFMK là tứ giác nội tiếp.
2) Chứng minh rằng: AI2 = IM . IB.
3) Chứng minh BAF là tam giác cân.
4) Chứng minh rằng : Tứ giác AKFH là hình thoi.
5) Xác định vị trí M để tứ giác AKFI nội tiếp được một đường tròn.
Bài 5: Cho x, y, z là ba số dương thoả mãn x + y + z =3. Chứng minh rằng:
.
Đề 3
Bài 1: Cho biểu thức P = (với )
 a) Rút gọn P 
 b) Tính giá trị của P với x = 
Bài 2: Cho hàm số 
a) Tìm k để đồ thị hàm số (*) cắt trục hoành tại điểm có hoành độ bằng 2.
b) Tìm k để đồ thị hàm số (*) song song với đường thẳng 
c) Tìm k để đồ thị hàm số (*) vuông góc với đường thẳng y = x – 3
Bài 3: Một ca nô dự định đi từ A đến B trong một thời gian nhất định. Nếu vận tốc ca nô tăng 3km /h thì đến nơi sớm 2 giờ. Nếu vận tốc ca nô giảm 3 km/h thì đến B chậm 3 giờ. Tính chiều dài khúc sông AB.
Bài 4: Cho nửa đường tròn (O; R) đường kính AB. Kẻ tiếp tuyến Bx và lấy hai điểm C và D thuộc nửa đường tròn. Các tia AC và AD cắt Bx lần lượt ở E, F (F ở giữa B và E).
Chứng minh AC. AE không đổi.
2.Chứng minh Ð ABD = Ð DFB.
3.Chứng minh rằng CEFD là tứ giác nội tiếp.
Bài 5: Với x 2 giải phương trình + =2
Đề 4
Bài 1: Rút gọn biểu thức:
a) 
b) 
Bài 2: a) Tìm giá trị của a và b để hệ phương trình 
có nghiệm là ( x; y ) = ( 1; -5)
b) Tìm các giá trị của a; b để hai đường thẳng ( d1) : 
 và (d2) : cắt nhau tại 1 điểm M ( 2; -5)
 Bài 3: Một Ô tô du lịch đi từ A đến B, sau 17 phút một Ô tô tải đì từ B về A. Sau khi xe tải đi được 28 phút thì hai xe gặp nhau. Biết vận tốc của xe du lịch hơn vận tốc của xe tải là 20 km/h và quãng đường AB dài 88 km. Tính vận tốc của mỗi xe.
Bài 4: Cho đường tròn tâm O đường kính AB và điểm M bất kì trên nửa đường tròn sao cho AM < MB. Gọi M’ là điểm đối xứng của M qua AB và S là giao điểm của hai tia BM, M’A. Gọi P là chân đường vuông góc từ S đến AB.
1. Chứng minh 4 điểm A, M, S, P cùng thuộc một đường tròn.
2.Gọi S’ là giao điểm của MA và SP. Chứng minh rằng ∆ PS’M cân. 
3.Chứng minh PM là tiếp tuyến của đường tròn 
Bài 5: Cho x,y thỏa mãn 4x+y =1. Chứng minh rằng 4x2 + y2 
Đáp án 1
Bài 3: Một xe máy đi từ A đến B trong một thời gian dự định. Nếu vận tốc tăng thêm 15 km/h thì đến B sớm 1 giờ, nếu xe giảm vận tốc đi 15 km/h thì đến B muộn 2 giờ. Tính quãng đường AB.
Giải :
- Gọi vận tốc dự định là x (km/h); thời gian dự định đi từ A đến B là y (h) 
(Điều kiện x > 15, y > 1). Thì quãng đường AB là x.y (km) 
- Nếu tăng vận tốc đi 15 km/h thì vận tốc là: x + 15 (km/h) thì đến sớm 1 giờ thời gian thực đi là: y –1(h) nên ta có phương trình: (1)
- Nếu giảm vận tốc đi 4 km/h thì vận tốc là: x – 15 (km/h) thì đến muộn 2 giờ thời
 gian thực đi là: y + 2 (h) nên ta có phương trình: (2)
Từ (1) và(2) ta có hệ phương trình: 
 (thoả mãn)
 Vậy vận tốc dự định là 45 (km/h); thời gian dự định đi từ A đến B là 4 (h)
Quãng đường AB dài là: S = v.t = 45 . 4 = 180 (km)
Bài 4: Cho tam giác ABC vuông ở A, đường cao AH. Vẽ đường tròn tâm A bán kính AH. Gọi HD là đường kính của đường tròn (A; AH). Tiếp tuyến của đường tròn tại D cắt CA ở E.
1.Chứng minh tam giác BEC cân.
2.Gọi I là hình chiếu của A trên BE, Chứng minh rằng AI = AH.
3.Chứng minh rằng BE là tiếp tuyến của đường tròn (A; AH).
4.Chứng minh BE = BH + DE.
Lời giải: (HD)
D AHC = DADE (g.c.g) => ED = HC (1) và AE = AC (2).
Vì AB ^CE (gt), do đó AB vừa là đường cao vừa là đường trung tuyến của DBEC => BEC là tam giác cân. => ÐB1 = ÐB2 
2. Hai tam giác vuông ABI và ABH có cạnh huyền AB chung, ÐB1 = ÐB2 => D AHB = DAIB => AI = AH.
3. AI = AH và BE ^ AI tại I => BE là tiếp tuyến của (A; AH) tại I.
4. DE = IE và BI = BH => BE = BI+IE = BH + ED
Bài 5: ĐK: 
x > y 
x < y 
 thỏa mãn
MinB = 9 Khi x = y = -1
Đáp án 2
Bài 1: Rút gọn biểu thức: P = với x và x 1
Giải:
 Ta có: P = với x và x 1
= = 
== = = Vậy P = 
Bài 2: Cho hàm số 
a) Tìm m để đồ thị hàm số (*) cắt trục tung tại điểm có tung độ bằng – 3.
b) Tìm m để đồ thị hàm số (*) song song với đường thẳng y = -2x + 1
c) Tìm m để đồ thị hàm số (*) vuông góc với đường thẳng y = 2x -3
Giải:
 a) Để đồ thị hàm số cắt trục tung tại điểm có tung độ = – 3.
 x = 0; y = - 3
Ta có: -3 = (m-3).0 + m + 2 m + 2 = 3 m = 1 
Vậy với m = 1 thì đồ thị hàm số cắt trục tung tại điểm có tung độ bằng - 3
b) Để đồ thị hàm số song song với đường thẳng 
 ( t/m)
Vậy với m = 1 thì đồ thị hàm số song song với đường thẳng 
c) Để đồ thị hàm số vuông góc với đường thẳng 
 a.a’ = -1 (m – 3) .2 = -1 
 2m – 6 = -1 2m = 5 
Vậy với đồ thị hàm số vuông góc với đường thẳng 
Bài 3: Tìm 1 số tự nhiên có 2 chữ số, biết rằng chữ số hàng đơn vị lớn hơn chữ số hàng chục là 4 và nếu đổi chỗ 2 chữ số cho nhau thì được số mới bằng số ban đầu.
Giải:
- Gọi chữ số hàng chục là x và chữ số hàng đơn vị là y 
( Điều kiện: 0 < x , y 9); x , y N)
- Theo bài ra chữ số hàng chục lớn hơn chữ số hàng đơn vị là 2 nên ta có phương trình: 	
- Ta có số đã cho là: , 
số mới sau khi đổi chỗ 2 chữ số cho nhau là: (1)
Theo bài ra nếu đổi chỗ 2 chữ số cho nhau thì được số mới bằng số ban đầu ta có phương trình: (2)
Từ (1) và (2) ta có hệ pt: 
 ( thoả mãn ) 
Vậy chữ số hàng chục là 1; chữ số hàng đơn vị là 5, Số đã cho là: 15
Bài 4: Cho nửa đường tròn tâm O đường kính AB và điểm M bất kì trên nửa đường tròn ( M khác A,B). Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ tiếp tuyến Ax. Tia BM cắt Ax tại I; tia phân giác của góc IAM cắt nửa đường tròn tại E; cắt tia BM tại F tia BE cắt Ax tại H, cắt AM tại K.
1) Chứng minh rằng: EFMK là tứ giác nội tiếp.
2) Chứng minh rằng: AI2 = IM . IB.
3) Chứng minh BAF là tam giác cân.
4) Chứng minh rằng : Tứ giác AKFH là hình thoi.
5) Xác định vị trí M để tứ giác AKFI nội tiếp được một đường tròn.
Giải:
1. Ta có : ÐAMB = 900 ( nội tiếp chắn nửa đường tròn ) 
=> ÐKMF = 900 (vì là hai góc kề bù).
ÐAEB = 900 ( nội tiếp chắn nửa đường tròn ) 
=> ÐKEF = 900 (vì là hai góc kề bù).
=> ÐKMF + ÐKEF = 1800 . Mà ÐKMF và ÐKEF là hai góc đối của tứ giác EFMK do đó EFMK là tứ giác nội tiếp.
Ta có ÐIAB = 900 ( vì AI là tiếp tuyến ) => DAIB vuông tại A có AM ^ IB ( theo trên). 
Áp dụng hệ thức giữa cạnh và đường cao => AI2 = IM . IB.
Theo giả thiết AE là tia phân giác góc IAM => ÐIAE = ÐMAE => AE = ME (lí do )
=> ÐABE =ÐMBE ( hai góc nội tiếp chắn hai cung bằng nhau) => BE là tia phân giác góc ABF. (1)
Theo trên ta có ÐAEB = 900 => BE ^ AF hay BE là đường cao của tam giác ABF (2).
Từ (1) và (2) => BAF là tam giác cân. tại B .
BAF là tam giác cân. tại B có BE là đường cao nên đồng thời là đương trung tuyến => E là trung điểm của AF. (3)
Từ BE ^ AF => AF ^ HK (4), theo trên AE là tia phân giác góc IAM hay AE là tia phân giác ÐHAK (5) 
Từ (4) và (5) => HAK là tam giác cân. tại A có AE là đường cao nên đồng thời là đương trung tuyến => E là trung điểm của HK. (6).
Từ (3) , (4) và (6) => AKFH là hình thoi ( vì có hai đường chéo vuông góc với nhau tại trung điểm của mỗi đường).
(HD). Theo trên AKFH là hình thoi => HA // FK hay IA // FK => tứ giác AKFI là hình thang. 
Để tứ giác AKFI nội tiếp được một đường tròn thì AKFI phải là hình thang cân. 
AKFI là hình thang cân khi M là trung điểm của cung AB. 
Thật vậy: M là trung điểm của cung AB => ÐABM = ÐMAI = 450 (t/c góc nội tiếp ). (7)
Tam giác ABI vuông tại A có ÐABI = 450 => ÐAIB = 450 .(8)
Từ (7) và (8) => ÐIAK = ÐAIF = 450 => AKFI là hình thang cân (hình thang có hai góc đáy bằng nhau).
Vậy khi M là trung điểm của cung AB thì tứ giác AKFI nội tiếp được một đường tròn.
Bài 5: Do x, y, z 1 đặt a = 1 – x 0, b = 1- y 0, c = 1- z 0 và a + b + c = 1 
suy ra z = 1 – x + 1- y = a + b, y = 1 – x + 1- z = a + c, x = 1- z + 1- y = c + b 
Khi đó A = 
Với m, n 0 thì (*) Dấu “=” khi m = n
Áp dụng (*) ta có: 
Tương tự ta có:; 
Suy ra: =
Dấu “=” xảy ra khi a = b = c = suy ra x = y = z = 
Vậy giá trị nhỏ nhất của A bằng khi x = y = z = 
Đáp án 3:
Bài 1: Cho biểu thức P = (với )
 a) Rút gọn P 
 b) Tính giá trị của P với x = 
Giải:
a) Ta có: (với )
 = 
 = 
 = 
 = = 
 = = 
 Vậy với thì biểu thức: 
b) Thay vào biểu thức ta được:
Bài 2: Cho hàm số 
a) Tìm k để đồ thị hàm số (*) cắt trục hoành tại điểm có hoành độ bằng 2.
b) Tìm k để đồ thị hàm số (*) song song với đường thẳng 
c) Tìm k để đồ thị hàm số (*) vuông góc với đường thẳng y = x – 3
Giải:
a) Để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng – 3.
 x = 0; y = - 3
Ta có: 0 = ( 2k + 1 ).2 + k - 2 
 4k + 2 +k - 2 = 0
 5k = 0 k = 0 
Vậy với k = 0 thì đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 2
b) Để đồ thị hàm số song song với đường thẳng 
 t/m)
Vậy với thì đồ thị hàm số song song với đường thẳng 
c) Để đồ thị hàm số vuông góc với đường thẳng y = x – 3
 a.a’ = -1 (2k + 1) . = -1 
 2k + 1 = - 3 2k = -4 k = -2 
Vậy với m = đồ thị hàm số vuông góc với đường thẳng y =x–3
Bài 4: Cho nửa đường tròn (O; R) đường kính AB. Kẻ tiếp tuyến Bx và lấy hai điểm C và D thuộc nửa đường tròn. Các tia AC và AD cắt Bx lần lượt ở E, F (F ở giữa B và E).
Chứng minh AC. AE không đổi.
Chứng minh Ð ABD = Ð DFB.
Chứng minh rằng CEFD là tứ giác nội tiếp.
Lời giải: 
C thuộc nửa đường tròn nên ÐACB = 900 ( nội tiếp chắn nửa đường tròn ) => BC ^ AE. 
ÐABE = 900 ( Bx là tiếp tuyến ) => tam giác ABE vuông tại B có BC là đường cao => AC. AE = AB2 (hệ thức giữa cạnh và đường cao ), mà AB là đường kính nên AB = 2R không đổi do đó AC. AE không đổi.
D ADB có ÐADB = 900 ( nội tiếp chắn nửa đường tròn ).
=> ÐABD + ÐBAD = 900 (vì tổng ba góc của một tam giác bằng 1800)(1)
D ABF có ÐABF = 900 ( BF là tiếp tuyến ).
=> ÐAFB + ÐBAF = 900 (vì tổng ba góc của một tam giác bằng 1800) (2)
Từ (1) và (2) => ÐABD = ÐDFB ( cùng phụ với ÐBAD)
Tứ giác ACDB nội tiếp (O) => ÐABD + ÐACD = 1800 .
ÐECD + ÐACD = 1800 ( Vì là hai góc kề bù) => ÐECD = ÐABD ( cùng bù với ÐACD).
Theo trên ÐABD = ÐDFB => ÐECD = ÐDFB. Mà ÐEFD + ÐDFB = 1800 ( Vì là hai góc kề bù) nên suy ra ÐECD + ÐEFD = 1800, mặt khác ÐECD và ÐEFD là hai góc đối của tứ giác CDFE do đó tứ giác CEFD là tứ giác nội tiếp.
Bài 5: Với x 2 phương trình trở thành
Đáp án 4:
Bài 1: Rút gọn biểu thức:
a) 
b) 
Giải:
a) Ta có: 
 = 
b) Ta có: 
Bài 2: 
a) Tìm giá trị của a và b để hệ phương trình 
 có nghiệm là ( x; y ) = ( 1; -5)
b) Tìm các giá trị của a; b để hai đường thẳng ( d1) : 
 và (d2) : cắt nhau tại 1 điểm M ( 2; -5)
Giải:
a) Vì hệ phương trình có nghiệm là ( x; y ) = ( 1; -5)
ta có hpt 
 Vậy với a =1 và b =17 thì hệ phương trình có nghiệm là (x; y ) =(1; -5)
b) Để hai đường thẳng (d1) : và (d2) : cắt nhau tại điểm M ( 2; -5) ta có hệ phương trình 
Vậy với a = 10 và thì 2 đường thẳng ( d1) : và 
 (d2): cắt nhau tại điểm M ( 2; -5)
Bài 3: Một Ô tô du lịch đi từ A đến B, sau 17 phút một Ô tô tải đì từ B về A. Sau khi xe tải đi được 28 phút thì hai xe gặp nhau. Biết vận tốc của xe du lịch hơn vận tốc của xe tải là 20 km/h và quãng đường AB dài 88 km. Tính vận tốc của mỗi xe.
Giải :
- Gọi vận tốc xe du lịch là x (km/h); Vận tốc xe tải là y (km/h) (Điều kiện: x >y > 0). - Theo bài ra vận tốc xe du lịch lớn hơn vận tốc xe tải là 20 km/h nên ta có phương trình: (1)
- Quãng đường xe du lịch đi được trong 45 phút là: (km)
- Quãng đường xe tải đi được trong 28 phút là: (km)
Theo bài ra quãng đường AB dài 88km nên ta có phương trình: (2)
Từ (1) và(2) ta có hệ phương trình: 
 . . . (thoả mãn)
 Vậy vận tốc xe du lịch là 80 (km/h); Vận tốc xe tải là 60 (km/h)
Bài 4: Cho đường tròn tâm O đường kính AB và điểm M bất kì trên nửa đường tròn sao cho AM < MB. Gọi M’ là điểm đối xứng của M qua AB và S là giao điểm của hai tia BM, M’A. Gọi P là chân đường 
vuông góc từ S đến AB.
1. Chứng minh 4 điểm A, M, S, P cùng thuộc một đường tròn.
2.Gọi S’ là giao điểm của MA và SP. Chứng minh rằng ∆ PS’M cân. 
3.Chứng minh PM là tiếp tuyến của đường tròn 
Lời giải: 
1. Ta có SP ^ AB (gt) => ÐSPA = 900 ; ÐAMB = 900 ( nội tiếp chắn nửa đường tròn ) => ÐAMS = 900 . Như vậy P và M cùng nhìn AS dưới một góc bằng 900 nên cùng nằm trên đường tròn đường kính AS.
Vậy bốn điểm A, M, S, P cùng nằm trên một đường tròn. 
2. Vì M’đối xứng M qua AB mà M nằm trên đường tròn nên M’ cũng nằm trên đường tròn => hai cung AM và AM’ có số đo bằng nhau 
=> ÐAMM’ = ÐAM’M ( Hai góc nội tiếp chắn hai cung bằng nhau) (1)
Cũng vì M’đối xứng M qua AB nên MM’ ^ AB tại H => MM’// SS’ ( cùng vuông góc với AB)
 => ÐAMM’ = ÐAS’S; ÐAM’M = ÐASS’ (vì so le trong) (2).
=> Từ (1) và (2) => ÐAS’S = ÐASS’. 
Theo trên bốn điểm A, M, S, P cùng nằm trên một đ/ tròn => ÐASP=ÐAMP (nội tiếp cùng chắn AP )
=> ÐAS’P = ÐAMP => tam giác PMS’ cân tại P.
3. Tam giác SPB vuông tại P; tam giác SMS’ vuông tại M => ÐB1 = ÐS’1 (cùng phụ với ÐS). (3)
Tam giác PMS’ cân tại P => ÐS’1 = ÐM1 (4)
Tam giác OBM cân tại O ( vì có OM = OB =R) => ÐB1 = ÐM3 (5).
Từ (3), (4) và (5) => ÐM1 = ÐM3 => ÐM1 + ÐM2 = ÐM3 + ÐM2 mà ÐM3 + ÐM2 = ÐAMB = 900 nên suy ra ÐM1 + ÐM2 = ÐPMO = 900 => PM ^ OM tại M => PM là tiếp tuyến của đường tròn tại M
Bài 5: Từ điều kiện ta có y= 1-4x. Thay vào hệ thức cần c/m ta được (5x-1)2 0- luôn đúng
Đề 5:
Bài 1: Rút gọn biểu thức:
 M = (với )
 Bài 2: Tìm a; b để đường thẳng y = ax + b đi qua 2 điểm: 
A và B 
A và B 
Bài 3: Cho hệ phương trình: 
a) Giải hệ phương trình khi m = 2
b) Giải hệ phương trình theo tham số m 
c) Tìm m để hệ phương trình có nghiệm (x; y) thoả mãn x - y = 1
d) Tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m.
Bài 4: Cho tam giác ABC (AB = AC). Cạnh AB, BC, CA tiếp xúc với đường tròn (O) tại các điểm D, E, F . BF cắt (O) tại I , DI cắt BC tại M. Chứng minh :
Tam giác DEF có ba góc nhọn.
DF // BC. 
Tứ giác BDFC nội tiếp. 
4. 
Bài 5: Cho các số thực x, y thỏa mãn: x + y = 2. Tìm GTNN của biểu thức: Q = x3 + y3 + x2 + y2.
Đáp án 5:
Bài 1: Rút gọn biểu thức:
 M = (với )
Giải:
Ta có: M = (với )
 = = = 
 Vậy với thì biểu thức M = 
 Bài 2: Tìm a; b để đường thẳng y = ax + b đi qua 2 điểm: 
A và B 
A và B 
Giải:
a) Để đường thẳng y = ax + b đi qua 2 điểm A và B ta có hệ phương trình 
Vậy với ; thì dường thẳng y = ax + b đi qua 2 điểm A và B 
b) Để đường thẳng y = ax + b đi qua 2 điểm A và B ta có hệ phương trình
Vậy với ; b = 2 thì dường thẳng y = ax + b đi qua 2 điểm A và B 
Bài 3: Cho hệ phương trình: 
a) Giải hệ phương trình khi m = 2
b) Giải hệ phương trình theo tham số m 
c) Tìm m để hệ phương trình có nghiệm (x; y) thoả mãn x - y = 1
d) Tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m.
Giải:
a) Thay m = 2 vào hệ phương trình ta có hệ phương trình trở thành 
 Vậy với m = 2 thì hệ phương trình có 1 nghiệm duy nhất ( x ; y) = ( 0 ; 1)
b) Giải hệ phương trình theo tham số m 
Ta có hpt 
 Vậy hệ phương trình có 1 nghiệm duy nhất (x; y ) = 
c) Để hệ phương trình có nghiệm (x; y) thoả mãn x - y = 1
 Vậy với m = 0 hoặc m = -1 thì hpt trên có nghiệm thoả mãn điều kiện: x - y = 1
d) Tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m.
Xét hệ phương trình 
Từ phương trình 
thay vào phương trình ta có phương trình 
Vậy là đẳng thức liên hệ giữa x và y không phụ thuộc vào m.
Bài 4: Cho tam giác ABC (AB = AC). Cạnh AB, BC, CA tiếp xúc với đường tròn (O) tại các điểm D, E, F . BF cắt (O) tại I , DI cắt BC tại M. Chứng minh :
Tam giác DEF có ba góc nhọn.
DF // BC. 
Tứ giác BDFC nội tiếp. 
4. 
Lời giải: 
 1. (HD) Theo t/c hai tiếp tuyến cắt nhau ta có AD = AF => tam giác ADF cân tại A => ÐADF = ÐAFD sđ cung DF ÐDEF < 900 ( vì góc DEF nội tiếp chắn cung DE). 
 Chứng minh tương tự ta có ÐDFE < 900; ÐEDF < 900. Như vậy tam giác DEF có ba góc nhọn.
 2. Ta có AB = AC (gt); AD = AF (theo trên) => => DF // BC.
3. DF // BC => BDFC là hình thang lại có Ð B = ÐC (vì tam giác ABC cân) 
=> BDFC là hình thang cân do đó BDFC nội tiếp được một đường tròn .
 4. Xét hai tam giác BDM và CBF Ta có Ð DBM = ÐBCF ( hai góc đáy của tam giác cân).
ÐBDM = ÐBFD (nội tiếp cùng chắn cung DI); Ð CBF = ÐBFD (vì so le) => ÐBDM = ÐCBF .
=> DBDM ~DCBF => 
Bài 5: Cho các số thực x, y thỏa mãn: x + y = 2. Tìm GTNN của biểu thức: Q = x3 + y3 + x2 + y2.
Giải: Ta có: Q = x3 + y3 + x2 + y2 = (x+y)3 – 3xy(x+y) + (x+y)2 – 2xy 
Do x + y = 2 => nên ta có: 
Q = 12 – 8xy = 12 – 8x( 2-x) = 12 - 16x + 8x2 = 8(x-1)2 +4 
Min Q = 4 ó x = y = 1.

Tài liệu đính kèm:

  • doc5_de_thi_tuyen_sinh_lop_10_thpt_mon_toan.doc