143 Bài tập Giới hạn dãy số - Hàm số

pdf 3 trang Người đăng khoa-nguyen Lượt xem 3363Lượt tải 2 Download
Bạn đang xem tài liệu "143 Bài tập Giới hạn dãy số - Hàm số", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
143 Bài tập Giới hạn dãy số - Hàm số
I HN DÃY S 

3
3
6n 2n 1
lim
n 2n
− +
−
 
2
2
1 n 2n
lim
5n n
− +
+
 
3 2
3
2n 4n 3n 3
lim
n 5n 7
− + +
− +
 
2
4
2n n 2
lim
3n 5
− + +
+
 
	
2
3 2
n 4n 5
lim
3n n 7
+ −
+ +
 

5 4
3 2
n n n 2
lim
4n 6n 9
+ − −
+ +
 
2
2
7n 3n 2
lim
n 5
− +
+

3
2
3n 2n 1
lim
2n n
+ −
−
 


3 2
2
2n 1 5n
lim
5n 12n 3
 −
+  ++ 
 
5 3
5 4
3n 7n 11
lim
n n 3n
− + −
+ −
 
2
6 5
2n 3
lim
n 5n
−
+

2
2
2n n
lim
1 3n
−
−


3 3n n
lim
n 2
+
+
 
4
2
2n 3n 2
lim
2n n 3
+ −
− +
 	
3 6 3n 7n 5n 8
lim
n 12
− − +
+


2n 1 n 1
lim
3n 2
+ − +
+

 ( )3lim 3n 7n 11− +  4 2lim 2n n n 2− + + 
 3 3lim 1 2n n+ −  2
1 2 ... n
lim
n
+ + +  

2
n 2 4 ... 2n
lim
3n n 2
+ + +
+ −

3 3 3
4 3
1 2 ... n
lim
n n 3n 2
+ + +
+ + +

2
n. 1 3 ... (2n 1)
lim
2n n 1
+ + + −
+ +


3 3 3
2
1 2 ... n
lim
11n n 2
+ + +
+ +
 ( )
22
3 3 3 n n 11 2 ... n
4
+
+ + + =  	
2 n
2 n
2 2 2
1 ...
3 3 3
lim
1 1 1
1 ...
5 5 5
   
+ + + +   
   
   
+ + + +   
   



n
n n
4
lim
2.3 4+
 
n
n
3 1
lim
2 1
+
−

n n
n
3 2.5
lim
7 3.5
−
+


n n
n n
4 5
lim
2 3.5
−
+

n n
n 1 n 1
( 3) 5
lim
( 3) 5+ +
− +
− +

 ( )lim 3n 1 2n 1− − −  ( )lim n 1 n n+ −  ( )2lim n n 1 n+ + −  ( )2 2lim n n n 1− + 
 ( )2lim n n 2 n 1+ + − + 	 ( )lim n 3 n 5+ − −  
 ( )2lim n n 3 n− + −  1lim n 2 n 1+ − + 
GII HN HÀM S 
1. ( )2
2
lim 3x 7x 11
x→
+ + 2.
( )
21
 7x 11
lim
4 2x
x
x→
+
+
 3.
( )( )
x 2
 3x 1 2 3x
lim
x 1→−
+ −
+
 4.
0
7x 11
lim 2 1 
x
x
x→
+ 
− 
 
5. 2
3
lim 4
x
x
→
− 6.
2x 9
x 3
lim
9x x→
−
−
 7.
2
3x
3x x 5
lim
x 2→−∞
− +
−
8.
4
4 2x
2x 3x 5
lim
x 2x→−∞
− +
−
9.
6 5
3x
3x 2x 5
lim
3x 2→+∞
− +
−
10.
6
3x
x 5x 1
lim
5x 2→−∞
− +
−
 11.
2
3
2x
x 5
lim
6x 3x 2→−∞
+
− +
12.
x 3
3 x
lim
3 x+→
−
−
13.
x 3
3 x
lim
3 x−→
−
−
 14.
x 3
3 x
lim
3 x→
−
−
 15.
x 0
x 2 x
lim
x x+→
+
−
 16.
2
x 2
4 x
lim
2 x−→
−
−
 17.
3
2x 2
x 2 2
lim
x 2→−
+
−
18.
4
2x 3
x 27x
lim
2x 3x 9→
−
− −
 19.
4
2x 2
x 16
lim
x 6x 8→−
−
+ +
20.
( )( )
5 3
3 2 3x
2x x 1
lim
2x 1 x x→+∞
+ −
− +
21.
2
x
x x 2x
lim
2x 3→−∞
+ +
+
22. ( ) 4 2x
x
lim x 1
2x x 1→+∞
+
+ +
 23. ( )3 2
x
lim 2x 5x 3x 1
→+∞
− + − 24. 4 2
x
lim 2x 5x 1
→+∞
− + 
143 BAI TAP GIOI HAN DAY SO - HAM SO - WWW.MATHVN.COM
1 www.MATHVN.com
25.
x 2
2x 1
lim
x 2+→
+
−
 26.
x 2
2x 1
lim
x 2−→
+
−
 27. ( )3 2
x
lim 2x 5x 3x 1
→+∞
− + − 28. 
3
2x
x 5
lim
x 1→+∞
−
+
29. 
3
2x 2
x 8
lim
x 4→
−
−
 31.
( ) ( )
2
2
x 3
2x 5x 3
lim
x 3−→ −
+ −
+
 32.
3
2x 0
x 1 1
lim
x x→
+ −
+
 33.
2
3x
2x x 10
lim
9 3x→+∞
+ +
−
34.
3
2x 3
x 3 3
lim
x 3→−
+
−
 35.
2x 4
x 2
lim
x 4x→
−
−
 36.
2x 1
x 1
lim
x x+→
−
−
 37.
2
x 0
x x 1 1
lim
3x→
+ + −
38.
3x 3
3 x
lim
27 x
−
→
−
−
 39.
3
2x 2
x 8
lim
x 2x+→
−
−
 
2
2x 2
x 3x 10
lim
3x 5x 2→
+ −
− −

2
x 2
x 4
lim
x 2→
−
−

2
2x 1
x 4x 3
lim
(x 1)→
− +
−


x 1
x 1
lim
1 x→
−
−

2
x 3
x 2x 15
lim
x 3→
+ −
−
	
2
x 5
x 2x 15
lim
x 5→−
+ −
+


3
x 1
x 1
lim
x(x 5) 6→
−
+ −

2
2x 4
x 3x 4
lim
x 4x→−
+ −
+


2
2x 4
x 5x 6
lim
x 12x 20→−
− +
− +


3 2
2x 2
x 3x 2x
lim
x x 6→−
+ +
− −
 	
4
2x 1
x 1
lim
x 2x 3→
−
+ −
 	
3 2
2x 2
x 4x 4x
lim
x x 6→−
+ +
− −

	
2
x 2
x 5 3
lim .
x 2→
+ −
−
	
4
x 7
x 9 2
lim
x 7→
+ −
−
 	
x 5
5 x
lim
5 x→
−
−
	
x 2
3x 5 1
lim
x 2→
− −
−

	

x 0
x
lim
1 x 1→ + −
	
2x 1
x 1
lim
6x 3 3x→−
+
+ +
	
2
x 0
1 x x 1
lim
x→
+ + −
	

2x 5
x 4 3
lim
x 25→
+ −
−
 

 ( )
2
x 0
1 2x x 1 x
lim
x→
− + − + 

x 3
x 3
lim
2x 10 4→
−
+ −


x 6
x 2 2
lim
x 6→
− −
−


2x 1
2x 3x 1
lim
x 1→
− +
−



2x 1
x 1
lim
x 2x 3→
−
+ −

	
x 0
5 x 5 x
lim
x→
+ − −
 


x 0
1 x 1 x
lim
x→
+ − −
 

x 1
2x 1 x
lim
x 1→
− −
−



2
x 0
1 x x x 1
lim
x→
+ − + +



2
2x 1
3x 2 4x x 2
lim
x 3x 2→
− − − −
− +
 
2
x 0
1 3x x 1 x
lim
x→
− + − +


x 4
3 5 x
lim
1 5 x→
− +
− −

x 2
x x 2
lim
4x 1 3→
− +
+ −
 
2
x 1
x x
lim
x 1→
−
−
 
3
2x 1
x 1
lim
x 3 2→−
+
+ −
	
2
2x 0
4 x 2
lim
9 x 3→
− −
− −


x 9
7 2x 5
lim
x 3→
+ −
−
 
2
2x
x 3x 10
lim
3x 5x 2→+∞
+ −
− −

2
3x
x 4
lim
x 2→−∞
−
−


2
2x
x 4x 3
lim
(x 1)→+∞
− +
−


2
x
x 2x 15
lim
x 5→−∞
+ −
+
 
2 1
lim
( 5) 6x
x
x x→+∞
−
+ −
 
2
4x
x 3x 4
lim
x 4x→−∞
+ −
+

4 3
2x
x 5x 6
lim
x 12x 20→+∞
− +
− +


3 2
5x
x 3x 2x
lim
x x 6→−∞
+ +
− −
	
2
1
lim
2 3x
x
x x→−∞
−
+ −
 

3 6 4
2x
x 4x 4
lim
x x 6→−∞
− +
− −


x 2
8 2x 2
lim
x 2+→−
+ −
+

x 0
2 x 3x
lim
3 x 2x+→
−
−
 
 ( ) 2
3x 1 ; x 1
f x
x 1 ; x 1
− ≤
= 	
+ >

x 1
lim f (x)
→



2mx ; x 2
f (x)
3 ; x 2
 ≤
= 	
>

x 2
lim f (x)
→


2x 5x 6 ; x 2
f (x)
mx 4 ; x 2
 − + >
= 	
 + ≤
Tìm m 	 hàm s
 có gii hn 
khi x 2→ 

 ( )2 2
x
lim x x 1 x 2
→+∞
+ − − 
 ( )2 2
x
lim x 7x 1 x 3x 2
→+∞
− + − − + 
 ( )2 2
x
lim x 4x 1 x 9x
→+∞
− + − − 

	 ( )2 2
x
lim x 2x 1 x 6x 3
→+∞
− + − − + 
 ( )2lim 4 7 2
x
x x x
→+∞
− − − + 2 www.MATHVN.com
60 BÀI TẬP GIỚI HẠN DÃY SỐ www.MATHVN.com 
1, 
2
2
n 2n 1
lim
3n n 3
- +
+ -
 2, 
( )( )
2
n 1 n 2
lim
n 3n 1
+ +
- + -
 3, 
( )( )
( )( )
n 1 2n 5
lim
3n 1 n 2
+ -
- +
4, 
2
n n n 1
lim
n 3
- +
+
 5, 
3
3 2
n 4n 1
lim
4n n 2
- +
- + -
 6, 
( )n
n 3
lim
n 1
+
+ -
7, 
4n 6
lim
n 1
+
-
 8, 
( )
( )
2
2
n 1 3n
lim
2n 1
+ -
-
 9, 
( ) ( )
( ) ( )
4 4
4 4
n 1 n 1
lim
n 1 n 1
+ - -
+ + -
10, 
( )( )2
3
n 1 3n 2
lim
n 2n 1
- +
- + -
 11, 
( )( )2 2
4 3
n 3n 6 2n n 1
lim
8n 4n 1
+ + - -
+ -
 12, 
( )( )
( )( )
2 2
3
n 3 2n 4n 1
lim
6n 2n 1 2n 1
- - + -
+ - -
13, 
24n n 1
lim
n 3
+ +
- -
 14, 
2n 1 3n 1
lim
6n n 1
+ - -
- - +
 15, 
3 2n n 2n 4n
lim
2n n 4n 1
+ - -
- - +
16, 
( )2007
2007 2000
2n 1 1
lim
n 3n
- -
-
 17, 
( )( )( )
( )
2 3
32
3n 1 n 2 3n 1
lim
2n 1
- + - -
+
 18, 
n 1 2
lim
n 3
+ -
+
19, 
3 38n 2n 1 3n
lim
2n 4 n 7
+ - +
- +
 20, 
2 22n 1 n 1
lim
n 1
+ - +
+
 21, 
2
1 2 3 ... n
lim
n
+ + + +
22, 
( )
2
n 1 3 5 ... 2n 1
lim
3n n 1
+ + + + +
- +
 23, 
3 2n 1 n 2n
lim
3n n 2n 1
+ - +
- +
 24, 
( )2 2
2
n 3n 1 n 2n 1
lim
5n 3n 2
+ + + -
- +
25, 
3 3 2n 3n 1 3n 4
lim
3n 1
+ + - +
-
 26, 
( )( )
( ) ( )
2 2
4 4
5n 3n 1 2n 6
lim
2n 1 3n 1
+ - +
+ - -
 27, 
( )n 2 n 3n 1
lim
n n 2n 6
+ -
- +
28, 
( )2
5
4n 1 2n 4n 2
lim
n 3n 1
+ - +
+ -
 29, 
( )2
2
n n 3 4n 7
lim
2n 4
- + -
+
 30, 
( )
( )
3 3 2
2
n 7 4n 1 2n 1
lim
3n 2
+ - + -
-
31, 
n n
n
2 3
lim
3 1
+
+
 32, 
n 1 n 1
n n
2 3
lim
2 3
+ ++
+
 33, 
( )
( )
n n
n n 1
2 3
lim
2 3 +
- +
- -
34, 
n n
n 1 n 2
5 3
lim
5 3+ +
-
+
 35, ( )2lim n 3n 10- - 36, ( )3lim n 4n 1- + - 
37, ( )4lim 2n 3 n 1- - + 38, ( )3lim 2n n 1- + 39, ( )3lim n n 1- + 
40, 
22n n
lim
n 1
-
+
 41, 
2
3
3n 3n 1
lim
2n 2n 1
+ -
- +
 42, 
( )2n 1 n
lim
3n 2
- -
+
43, 
( )3 3
4
2n 1 n 2n 1
lim
2n 3n 2
- + - +
+ -
 44, 
( ) ( )
( )
2 42
3
2n 1 n 1
lim
4n 3
- - +
+
 45, 
n n 3n 1
lim
5n 7
+ -
+
46, ( )2lim n n 5 n+ + - 47, ( )2lim 4n 3n 1 2n- + - 48, ( )2lim n 2 n n+ - 
49, ( )2lim n 2 n+ - 50, ( )2lim n 3n 1 2n- + - 51, ( )2lim n 4n 2 n 2+ + - + 
52, ( )2 2lim 2n 1 2n n 1+ - + + 53, ( )lim n n 3 n 1+ - + 54, ( )lim n 5 2n 3 2n 1+ + - - 
55, 
2
1
lim
n 1 n 2+ - +
 56, 
2n 1 n
lim
2n 5 n 2
+ -
- - +
 57, 
( )3n 2 2n 1 n 2
lim
n 3
+ - - -
+
58, ( )3 3 2lim n 2n 1 n+ + - 59, ( )32 3 2lim n 3n n n 2n+ + + - 60, ( )3 3 2 2lim n 3n 1 n 2n+ + - + 

Tài liệu đính kèm:

  • pdfBai_tap_ve_gioi_han_cua_day_so_ham_so.pdf