I HN DÃY S 3 3 6n 2n 1 lim n 2n − + − 2 2 1 n 2n lim 5n n − + + 3 2 3 2n 4n 3n 3 lim n 5n 7 − + + − + 2 4 2n n 2 lim 3n 5 − + + + 2 3 2 n 4n 5 lim 3n n 7 + − + + 5 4 3 2 n n n 2 lim 4n 6n 9 + − − + + 2 2 7n 3n 2 lim n 5 − + + 3 2 3n 2n 1 lim 2n n + − − 3 2 2 2n 1 5n lim 5n 12n 3 − + ++ 5 3 5 4 3n 7n 11 lim n n 3n − + − + − 2 6 5 2n 3 lim n 5n − + 2 2 2n n lim 1 3n − − 3 3n n lim n 2 + + 4 2 2n 3n 2 lim 2n n 3 + − − + 3 6 3n 7n 5n 8 lim n 12 − − + + 2n 1 n 1 lim 3n 2 + − + + ( )3lim 3n 7n 11− + 4 2lim 2n n n 2− + + 3 3lim 1 2n n+ − 2 1 2 ... n lim n + + + 2 n 2 4 ... 2n lim 3n n 2 + + + + − 3 3 3 4 3 1 2 ... n lim n n 3n 2 + + + + + + 2 n. 1 3 ... (2n 1) lim 2n n 1 + + + − + + 3 3 3 2 1 2 ... n lim 11n n 2 + + + + + ( ) 22 3 3 3 n n 11 2 ... n 4 + + + + = 2 n 2 n 2 2 2 1 ... 3 3 3 lim 1 1 1 1 ... 5 5 5 + + + + + + + + n n n 4 lim 2.3 4+ n n 3 1 lim 2 1 + − n n n 3 2.5 lim 7 3.5 − + n n n n 4 5 lim 2 3.5 − + n n n 1 n 1 ( 3) 5 lim ( 3) 5+ + − + − + ( )lim 3n 1 2n 1− − − ( )lim n 1 n n+ − ( )2lim n n 1 n+ + − ( )2 2lim n n n 1− + ( )2lim n n 2 n 1+ + − + ( )lim n 3 n 5+ − − ( )2lim n n 3 n− + − 1lim n 2 n 1+ − + GII HN HÀM S 1. ( )2 2 lim 3x 7x 11 x→ + + 2. ( ) 21 7x 11 lim 4 2x x x→ + + 3. ( )( ) x 2 3x 1 2 3x lim x 1→− + − + 4. 0 7x 11 lim 2 1 x x x→ + − 5. 2 3 lim 4 x x → − 6. 2x 9 x 3 lim 9x x→ − − 7. 2 3x 3x x 5 lim x 2→−∞ − + − 8. 4 4 2x 2x 3x 5 lim x 2x→−∞ − + − 9. 6 5 3x 3x 2x 5 lim 3x 2→+∞ − + − 10. 6 3x x 5x 1 lim 5x 2→−∞ − + − 11. 2 3 2x x 5 lim 6x 3x 2→−∞ + − + 12. x 3 3 x lim 3 x+→ − − 13. x 3 3 x lim 3 x−→ − − 14. x 3 3 x lim 3 x→ − − 15. x 0 x 2 x lim x x+→ + − 16. 2 x 2 4 x lim 2 x−→ − − 17. 3 2x 2 x 2 2 lim x 2→− + − 18. 4 2x 3 x 27x lim 2x 3x 9→ − − − 19. 4 2x 2 x 16 lim x 6x 8→− − + + 20. ( )( ) 5 3 3 2 3x 2x x 1 lim 2x 1 x x→+∞ + − − + 21. 2 x x x 2x lim 2x 3→−∞ + + + 22. ( ) 4 2x x lim x 1 2x x 1→+∞ + + + 23. ( )3 2 x lim 2x 5x 3x 1 →+∞ − + − 24. 4 2 x lim 2x 5x 1 →+∞ − + 143 BAI TAP GIOI HAN DAY SO - HAM SO - WWW.MATHVN.COM 1 www.MATHVN.com 25. x 2 2x 1 lim x 2+→ + − 26. x 2 2x 1 lim x 2−→ + − 27. ( )3 2 x lim 2x 5x 3x 1 →+∞ − + − 28. 3 2x x 5 lim x 1→+∞ − + 29. 3 2x 2 x 8 lim x 4→ − − 31. ( ) ( ) 2 2 x 3 2x 5x 3 lim x 3−→ − + − + 32. 3 2x 0 x 1 1 lim x x→ + − + 33. 2 3x 2x x 10 lim 9 3x→+∞ + + − 34. 3 2x 3 x 3 3 lim x 3→− + − 35. 2x 4 x 2 lim x 4x→ − − 36. 2x 1 x 1 lim x x+→ − − 37. 2 x 0 x x 1 1 lim 3x→ + + − 38. 3x 3 3 x lim 27 x − → − − 39. 3 2x 2 x 8 lim x 2x+→ − − 2 2x 2 x 3x 10 lim 3x 5x 2→ + − − − 2 x 2 x 4 lim x 2→ − − 2 2x 1 x 4x 3 lim (x 1)→ − + − x 1 x 1 lim 1 x→ − − 2 x 3 x 2x 15 lim x 3→ + − − 2 x 5 x 2x 15 lim x 5→− + − + 3 x 1 x 1 lim x(x 5) 6→ − + − 2 2x 4 x 3x 4 lim x 4x→− + − + 2 2x 4 x 5x 6 lim x 12x 20→− − + − + 3 2 2x 2 x 3x 2x lim x x 6→− + + − − 4 2x 1 x 1 lim x 2x 3→ − + − 3 2 2x 2 x 4x 4x lim x x 6→− + + − − 2 x 2 x 5 3 lim . x 2→ + − − 4 x 7 x 9 2 lim x 7→ + − − x 5 5 x lim 5 x→ − − x 2 3x 5 1 lim x 2→ − − − x 0 x lim 1 x 1→ + − 2x 1 x 1 lim 6x 3 3x→− + + + 2 x 0 1 x x 1 lim x→ + + − 2x 5 x 4 3 lim x 25→ + − − ( ) 2 x 0 1 2x x 1 x lim x→ − + − + x 3 x 3 lim 2x 10 4→ − + − x 6 x 2 2 lim x 6→ − − − 2x 1 2x 3x 1 lim x 1→ − + − 2x 1 x 1 lim x 2x 3→ − + − x 0 5 x 5 x lim x→ + − − x 0 1 x 1 x lim x→ + − − x 1 2x 1 x lim x 1→ − − − 2 x 0 1 x x x 1 lim x→ + − + + 2 2x 1 3x 2 4x x 2 lim x 3x 2→ − − − − − + 2 x 0 1 3x x 1 x lim x→ − + − + x 4 3 5 x lim 1 5 x→ − + − − x 2 x x 2 lim 4x 1 3→ − + + − 2 x 1 x x lim x 1→ − − 3 2x 1 x 1 lim x 3 2→− + + − 2 2x 0 4 x 2 lim 9 x 3→ − − − − x 9 7 2x 5 lim x 3→ + − − 2 2x x 3x 10 lim 3x 5x 2→+∞ + − − − 2 3x x 4 lim x 2→−∞ − − 2 2x x 4x 3 lim (x 1)→+∞ − + − 2 x x 2x 15 lim x 5→−∞ + − + 2 1 lim ( 5) 6x x x x→+∞ − + − 2 4x x 3x 4 lim x 4x→−∞ + − + 4 3 2x x 5x 6 lim x 12x 20→+∞ − + − + 3 2 5x x 3x 2x lim x x 6→−∞ + + − − 2 1 lim 2 3x x x x→−∞ − + − 3 6 4 2x x 4x 4 lim x x 6→−∞ − + − − x 2 8 2x 2 lim x 2+→− + − + x 0 2 x 3x lim 3 x 2x+→ − − ( ) 2 3x 1 ; x 1 f x x 1 ; x 1 − ≤ = + > x 1 lim f (x) → 2mx ; x 2 f (x) 3 ; x 2 ≤ = > x 2 lim f (x) → 2x 5x 6 ; x 2 f (x) mx 4 ; x 2 − + > = + ≤ Tìm m hàm s có gii hn khi x 2→ ( )2 2 x lim x x 1 x 2 →+∞ + − − ( )2 2 x lim x 7x 1 x 3x 2 →+∞ − + − − + ( )2 2 x lim x 4x 1 x 9x →+∞ − + − − ( )2 2 x lim x 2x 1 x 6x 3 →+∞ − + − − + ( )2lim 4 7 2 x x x x →+∞ − − − + 2 www.MATHVN.com 60 BÀI TẬP GIỚI HẠN DÃY SỐ www.MATHVN.com 1, 2 2 n 2n 1 lim 3n n 3 - + + - 2, ( )( ) 2 n 1 n 2 lim n 3n 1 + + - + - 3, ( )( ) ( )( ) n 1 2n 5 lim 3n 1 n 2 + - - + 4, 2 n n n 1 lim n 3 - + + 5, 3 3 2 n 4n 1 lim 4n n 2 - + - + - 6, ( )n n 3 lim n 1 + + - 7, 4n 6 lim n 1 + - 8, ( ) ( ) 2 2 n 1 3n lim 2n 1 + - - 9, ( ) ( ) ( ) ( ) 4 4 4 4 n 1 n 1 lim n 1 n 1 + - - + + - 10, ( )( )2 3 n 1 3n 2 lim n 2n 1 - + - + - 11, ( )( )2 2 4 3 n 3n 6 2n n 1 lim 8n 4n 1 + + - - + - 12, ( )( ) ( )( ) 2 2 3 n 3 2n 4n 1 lim 6n 2n 1 2n 1 - - + - + - - 13, 24n n 1 lim n 3 + + - - 14, 2n 1 3n 1 lim 6n n 1 + - - - - + 15, 3 2n n 2n 4n lim 2n n 4n 1 + - - - - + 16, ( )2007 2007 2000 2n 1 1 lim n 3n - - - 17, ( )( )( ) ( ) 2 3 32 3n 1 n 2 3n 1 lim 2n 1 - + - - + 18, n 1 2 lim n 3 + - + 19, 3 38n 2n 1 3n lim 2n 4 n 7 + - + - + 20, 2 22n 1 n 1 lim n 1 + - + + 21, 2 1 2 3 ... n lim n + + + + 22, ( ) 2 n 1 3 5 ... 2n 1 lim 3n n 1 + + + + + - + 23, 3 2n 1 n 2n lim 3n n 2n 1 + - + - + 24, ( )2 2 2 n 3n 1 n 2n 1 lim 5n 3n 2 + + + - - + 25, 3 3 2n 3n 1 3n 4 lim 3n 1 + + - + - 26, ( )( ) ( ) ( ) 2 2 4 4 5n 3n 1 2n 6 lim 2n 1 3n 1 + - + + - - 27, ( )n 2 n 3n 1 lim n n 2n 6 + - - + 28, ( )2 5 4n 1 2n 4n 2 lim n 3n 1 + - + + - 29, ( )2 2 n n 3 4n 7 lim 2n 4 - + - + 30, ( ) ( ) 3 3 2 2 n 7 4n 1 2n 1 lim 3n 2 + - + - - 31, n n n 2 3 lim 3 1 + + 32, n 1 n 1 n n 2 3 lim 2 3 + ++ + 33, ( ) ( ) n n n n 1 2 3 lim 2 3 + - + - - 34, n n n 1 n 2 5 3 lim 5 3+ + - + 35, ( )2lim n 3n 10- - 36, ( )3lim n 4n 1- + - 37, ( )4lim 2n 3 n 1- - + 38, ( )3lim 2n n 1- + 39, ( )3lim n n 1- + 40, 22n n lim n 1 - + 41, 2 3 3n 3n 1 lim 2n 2n 1 + - - + 42, ( )2n 1 n lim 3n 2 - - + 43, ( )3 3 4 2n 1 n 2n 1 lim 2n 3n 2 - + - + + - 44, ( ) ( ) ( ) 2 42 3 2n 1 n 1 lim 4n 3 - - + + 45, n n 3n 1 lim 5n 7 + - + 46, ( )2lim n n 5 n+ + - 47, ( )2lim 4n 3n 1 2n- + - 48, ( )2lim n 2 n n+ - 49, ( )2lim n 2 n+ - 50, ( )2lim n 3n 1 2n- + - 51, ( )2lim n 4n 2 n 2+ + - + 52, ( )2 2lim 2n 1 2n n 1+ - + + 53, ( )lim n n 3 n 1+ - + 54, ( )lim n 5 2n 3 2n 1+ + - - 55, 2 1 lim n 1 n 2+ - + 56, 2n 1 n lim 2n 5 n 2 + - - - + 57, ( )3n 2 2n 1 n 2 lim n 3 + - - - + 58, ( )3 3 2lim n 2n 1 n+ + - 59, ( )32 3 2lim n 3n n n 2n+ + + - 60, ( )3 3 2 2lim n 3n 1 n 2n+ + - +
Tài liệu đính kèm: