Kiểm tra 45 phút Hình học - Dành cho lớp chuyên Toán 10

docx 14 trang Người đăng khoa-nguyen Lượt xem 4043Lượt tải 0 Download
Bạn đang xem tài liệu "Kiểm tra 45 phút Hình học - Dành cho lớp chuyên Toán 10", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Kiểm tra 45 phút Hình học - Dành cho lớp chuyên Toán 10
KIỂM TRA 45 PHÚT HÌNH HỌC 
DÀNH CHO LỚP CHUYÊN TOÁN 10 1
Bài I: (6 điểm) Cho góc nhọn BAx, điểm C di động trên tia Ax ( C khác A). Gọi tiếp điểm của BC, CA, AB với đường tròn (O) nội tiếp tam giác ABC lần lượt là M,N,P.
1. Gọi E là giao điểm MN và AB. Chứng minh 
2. Chứng minh rằng : MN luôn đi qua một điểm cố định khi C di động.
(Trích đê 30 – 4 – 2014 THPT Gia Định)
Bài II: (4 điểm) Cho tứ giác ABCD và các điểm M, N, P, Q ; các số m,n,p,q khác không thỏa điều kiện sau:
. Gọi I là giao điểm MN và PQ.
Chứng minh 
DÀNH CHO LỚP CHUYÊN TOÁN 10 2
Bài I : (4 điểm) Cho tam giác ABC. Đường tròn nội tiếp (I) tiếp xúc với AC, AB tại E, F. Gọi K là giao điểm BI và EF. Chứng minh 
Bài II : (6 điểm) Cho tam giác nhọn ABC với BC là cạnh nhỏ nhất. Đường tròn nội tiếp (I) của tam giác tiếp xúc với BC, CA, AB theo thứ tự tại X, Y, Z. Gọi G là trọng tâm tam giác XYZ. Trên các tia BA, CA lấy các điêm E, F sao cho BE = CF = BC. Chứng minh 
Trích SGK chuyên toán Hình 10
LUYỆN TẬP THÊM TỈ SỐ KÉP VÀ HÀNG ĐIỀU HÒA
BÀI TẬP VẬN DỤNG CÓ HƯỚNG DẪN DÀNH CHO LỚP CHUYÊN TOÁN 10
1. Đề THPT Thực Hành SP An Giang 2012
Cho tam giác ABC và điểm M. Gọi theo thứ tự là trọng tâm các tam giác MCB; MCA; MAB , và ABC. Chứng minh khi M thay đổi, đường thẳng luôn quay quanh một điểm cố định.
HD: Dùng phương pháp vectơ
2. THPT Thượng Hiền 2012
Cho hai đường tròn cắt nhau tại hai điểm A và B. Một cát tuyến CBD quay quanh B được nhìn từ A dưới 1 góc Đường kính CE của (O) cắt (O’) tại F và G. Gọi I là giao điểm của BG và AD. Chứng minh CI; FD; BE đồng quy.
HD: Dùng hàng điểm điều hòa ( Hệ thức Newton) và áp dụng Ceva + Menelaus
3. Chuyên Thăng Long 2012
Cho hình bình hành ABCD và điểm M trên AC. Gọi E là điểm đối xứng của B qua M. Trên CD và AD lần lượt lấy các điểm P và Q sao cho EP//AD; EQ//CD. Chứng minh M,P,Q thẳng hàng
HD. Dùng Menelaus
4. Cho tam giác ABC và một điểm M nằm trong tam. AM , BM, CM theo thứ tự cắt BC, CA, AB tại theo thứ tự cắt tại theo thứ tự là trung điểm của . Chứng minh thẳng hàng.
HD : dùng định lí 8 và Menelaus
5. Cho tam giác ABC và điểm O nằm trong tam giác. BO, CO theo thứ tự cắt AC, AB tại E, F. . H là hình chiếu của I trên BC. Chứng minh 
HD : dùng định lí 8 và 16
6. Cho tam giác ABC. Đường tròn nội tiếp (I) tiếp xúc với BC, CA, AB tại D,E,F. H là hình chiếu của D trên EF. Chứng minh 
HD : dùng định lí 8 và Ceva
7. Cho hai đường thẳng a,b cắt nhau tại O. Điểm M không thuộc a, b và không thuộc các đường phân giác của góc tạo bởi a,b. Hai điểm A,B theo thứ tự thay đổi trên a,b sao cho . Chứng minh rằng AB luôn đi qua một điểm cố định.
HD: Dùng định lí 7 và chùm điều hòa
Một số ứng dụng của định lý Menelaus, Ceva trong toán THCS:
- Chứng minh các tỉ số đoạn thẳng, tỉ số diện tích bằng nhau
- Chứng minh 3 điểm thẳng hàng, 3 đường thẳng đồng quy
- Áp dụng để giải các bài tập tổng hợp: Chứng minh song song, tính góc,
I. Bài tập minh họa:
Bài 1. Cho DABC có trung tuyến AM. Trên AM lấy I sao cho AI = 4MI. Đường thẳng BI cắt AC tại P. Chứng minh rằng: PA = 2PC
Bài 2. Cho DABC. Gọi D là trung điểm của BC, E và F lần lượt là hai điểm nằm trên AB, AC sao cho AD, BF, CE đồng quy. Chứng minh rằng EF // BC
Bài 3. Cho tứ giác ABCD ngoại tiếp đường tròn (O). Gọi M, N, P, Q lần lượt là các tiếp điểm của (O) với AB, BC, CD, DA. Chứng minh rằng: Các đường thẳng NP, MQ, BD đồng quy.	
Bài 4. Cho đường tròn (O; R) đường kính AB. Qua B kẻ tiếp tuyến d của đường tròn (O). MN là một đường kính thay đổi của đường tròn (M không trùng với A, B). Các đường thẳng AM và AN cắt đường thẳng d lần lượt tại C và D. Gọi I là giao điểm của CO và BM. Đường thẳng AI cắt đường tròn (O) tại điểm thứ hai là E, cắt đường thẳng d tại F. Chứng minh ba điểm C, E, N thẳng hàng.
Bài 5. Cho tam giác nhọn ABC, . Gọi D, E, F lần lượt là chân đường cao kẻ từ A, B, C. Gọi P là giao điểm của đường thẳng BC và EF. Đường thẳng qua D song song với EF lần lượt cắt các đường thẳng AB, AC, CF tại Q, R, S. Chứng minh:
a) Tứ giác BQCR nội tiếp.
b) và D là trung điểm của QS.
c) Đường tròn ngoại tiếp tam giác PQR đi qua trung điểm của BC. 
Bài 6. Cho tam giác có Trên các cạnh lần lượt lấy các điểm sao cho Giả sử đường thẳng đi qua và trung điểm của đoạn thẳng cắt đường thẳng tại 
a) Chứng minh rằng đường thẳng chia đôi góc 
b) Chứng minh rằng 
Bài 7. Cho tam giác ABC, gọi M là chân đường vuông góc kẻ từ A xuống đường phân giác của góc BCA, N và L lần lượt là chân đường vuông góc kẻ từ A và C xuống đường phân giác của góc ABC. Gọi F là giao của MN và AC, E là giao của BF và CL, D là giao của BL và AC. Chứng minh rằng DE song song với MN
Bài 8. Cho DABC lấy E, F, M thứ tự trên cạnh AC, AB sao cho EF//BC, MB = MC. Chứng minh CF, BE , AM đồng quy.
Bài 9. Cho đường tròn nội tiếp DABC tiếp xúc các cạnh BC, CA, AB lần lượt tại D, E, F. Chứng minh AD, BE, CF đồng quy. 
Bài 10. Cho tam giác ABC đường cao AH. Lấy D,E thứ tự trên AB, AC sao cho AH là phân giác góc DHE. Chứng minh: AH, BE, CD đồng quy.
Bài 11. Cho DABC vuông tại A, đường cao AK. Dựng bên ngoài tam giác những hình vuông ABEF và ACGH. Chứng minh: AK, BG, CE đồng quy.
II. Bài tập đề nghị:
Bài 1. Cho tứ giác ABCD có M, N là giao của các cặp cạnh đối AB và CD, AD và BC. Đường thẳng AC cắt BD, MN tại I, J. Chứng minh rằng 
Bài 2. Cho 2 tam giác ABC và A’B’C’ sao cho AA’, BB’, CC’ đồng quy ở O. Gọi A1, B1, C1 lần lượt là giao điểm các cặp cạnh BC và B’C’, CA và C’A’, AB và A’B’. Chứng minh rằng A1, B1, C1 thẳng hàng.
Bài 3. Cho tứ giác ABCD có các cặp cạnh đối AB và Cd, AD và BC cắt nhau tại M, N. Chứng minh rằng các trung điểm I, J, K của AC, BD, MN thẳng hàng.
Bài 4. Cho lục giác ABCDEF nội tiếp đường tròn (O). Các điểm A’, B’, C’ lần lượt là giao điểm của các cặp AB và DE, BC và EF, CD và AF. Chứng minh 3 điểm A’, B’, C’ thẳng hàng. 
Bài 5. Cho tam giác ABC có A’, B’, C’ là trung điểm các cạnh BC, CA, AB. Điểm M nằm trong tam giác ABC các điểm A1, B1, C1 lần lượt là giao điểm của MA, MB, MC với B’C’, C’A’, A’B’. Chứng minh rằng A’A1, B’B1, C’C1 đồng quy.
Bài 6. Cho tam giác ABC. Một đường thẳng cắt các cạnh BC, CA, AB lần lượt tại A1, B1, C1. Gọi A2, B2, C2 lần lượt là các điểm đối xứng của A1, B1, C1 qua trong điểm các cạnh BC, CA, AB. Chứng minh 3 điểm A2, B2, C2 thẳng hàng.
Bài 7. Cho tam giác ABC và điểm M nằm trong tam giác. AM, BM, CM lần lượt cắt các cạnh đối diện tại A1, B1, C1. Giả sử đường tròn ngoại tiếp tam giác A1B1C1 cắt các cạnh BC, CA, AB tại điểm thứ hai là A2, B2, C2. Chứng minh AA2, BB2, CC2 đồng quy.
Bài 8. Cho (O1) và (O2) cắt nhau tại hai điểm A, B. Các tiếp tuyến tại A và B của (O1) cắt nhau ở K. Lấy điểm M nằm trên (O1) không trùng A và B. Đường thẳng AM cắt (O2) tại điểm thứ hai P, đường thẳng KM cắt (O1) tại điểm thứ hai là C và đường thẳng AC cắt (O2) tại điểm thứ hai là Q. Gọi H là giao điểm của PQ với đường thẳng MC. Chứng minh rằng: H là trung điểm của PQ.
Bài 9. Cho góc xOy, trên tia Ox lấy hai điểm C và A, trên tia Oy lấy hai điểm D và B sao cho AD cắt BC tại E. Các đường thẳng AB và CD cắt nhau tại K; tia OE cắt AB tại I. Chứng minh rằng: 
II. Bài tập minh họa:
Bài 1. Cho DABC có trung tuyến AM. Trên AM lấy I sao cho AI = 4MI. Đường thẳng BI cắt AC tại P. Chứng minh rằng: PA = 2PC
Lời giải.
Áp dụng định lí Menelaus cho DAMC với cát tuyến BIP ta có: 
Suy ra: nên PA = 2PC
Nhận xét: Việc áp dụng định lí Menelaus cho bài toán này dẫn đến lời giải hay và rất ngắn gọn.
Bài 2. Cho DABC. Gọi D là trung điểm của BC, E và F lần lượt là hai điểm nằm trên AB, AC sao cho AD, BF, CE đồng quy. Chứng minh rằng EF // BC
Lời giải.
Áp dụng định lí Ceva cho DABC với các đường đồng quy là AD, BF và CE ta có 
Vì BD = CD nên suy ra 
Vậy theo định lí Ta-lét ta có: EF // BC	
Nhận xét: Trong bài tập trên nếu dùng các dấu hiệu nhận biết hai đường thẳng song song thông thường dùng thì rất khó khăn trong chứng minh. Ở đây ta dùng định lí Ceva sẽ dẫn đến tỉ số có lợi là và áp dụng định lí Ta-let để thu được kết quả hay và ngắn gọn.
Bài 3. Cho tứ giác ABCD ngoại tiếp đường tròn (O). Gọi M, N, P, Q lần lượt là các tiếp điểm của (O) với AB, BC, CD, DA. Chứng minh rằng: Các đường thẳng NP, MQ, BD đồng quy.	
Lời giải.
Gọi I là giao của QM và BD. 
Áp dụng định lý Menelaus cho tam giác ABD
với 3 điểm Q, M, I thẳng hàng ta có mà MA = QA nên suy ra . 
Ta có MB = NB, DQ = DP, PC = NC 
nên , do đó theo định lý Menelaus thì I, N, P thẳng hàng.
Bài 4. Cho đường tròn (O; R) đường kính AB. Qua B kẻ tiếp tuyến d của đường tròn (O). MN là một đường kính thay đổi của đường tròn (M không trùng với A, B). Các đường thẳng AM và AN cắt đường thẳng d lần lượt tại C và D. Gọi I là giao điểm của CO và BM. Đường thẳng AI cắt đường tròn (O) tại điểm thứ hai là E, cắt đường thẳng d tại F. Chứng minh ba điểm C, E, N thẳng hàng.
(Trích Câu 5.d Đề HSG Phú Thọ 2010-2011)
Lời giải.
Áp dụng định lý Menelaus vào tam giác ACO với ba điểm thẳng hàng là B, I, M ta có: 	(1)
Tương tự với tam giác BCO và ba điểm thẳng hàng là A, I, F ta có: 	(2)
Từ (1) và (2) ta có . Do đó MF // AB (định lí Ta lét đảo) mà AB BC MF BC 
Ta có (cùng phụ với góc EAB); 
 (tứ giác AMEB nội tiếp) 
 Tứ giác MEFC nội tiếp 
 . Do đó: ME EC 	(3). 
Lại có (chắn nửa đtròn) ME EN 	(4).
Từ (3) và (4) suy ra C, E, N thẳng hàng.
Bài 5. Cho tam giác nhọn ABC, . Gọi D, E, F lần lượt là chân đường cao kẻ từ A, B, C. Gọi P là giao điểm của đường thẳng BC và EF. Đường thẳng qua D song song với EF lần lượt cắt các đường thẳng AB, AC, CF tại Q, R, S. Chứng minh:
a) Tứ giác BQCR nội tiếp.
b) và D là trung điểm của QS.
c) Đường tròn ngoại tiếp tam giác PQR đi qua trung điểm của BC. 
(Trích Đề thi vào lớp Chuyên Toán, Vĩnh Phúc 2013-2014)
D
M
P
Q
R
S
E
F
H
A
B
C
Lời giải.
a) Do nên Q nằm trên tia đối 
của tia BA và R nằm trong đoạn CA, 
từ đó Q, C nằm về cùng một phía của 
đường thẳng BR.
Do tứ giác BFEC nội tiếp nên ,
Do QR song song với EF nên 
Từ đó suy ra hay tứ giác BQCR nội tiếp.
b) Tam giác DHB đồng dạng tam giác EHA nên 
Tam giác DHC đồng dạng tam giác FHA nên 
Từ hai tỷ số trên ta được 
Áp dụng định lí Menelaus cho tam giác ABC với cát tuyến PEF ta được:
Từ (1) và (2) ta được 
Do QR song song với EF nên theo định lí Thales .
Kết hợp với (3) ta được hay D là trung điểm của QS.
c). Gọi M là trung điểm của BC. Ta sẽ chứng minh .
Thật vậy, do tứ giác BQCR nội tiếp nên (4).
Tiếp theo ta chứng minh 
 (đúng theo phần b). Do đó 
Từ (4) và (5) ta được suy ra tứ giác PQMR nội tiếp hay đường tròn ngoại tiếp tam giác PQR đi qua trung điểm của BC.
Bài 6. Cho tam giác có Trên các cạnh lần lượt lấy các điểm sao cho Giả sử đường thẳng đi qua và trung điểm của đoạn thẳng cắt đường thẳng tại 
a) Chứng minh rằng đường thẳng chia đôi góc 
b) Chứng minh rằng 
(Trích Đề thi vào lớp Chuyên Tin, Vĩnh Phúc 2011-2012)
Lời giải.
a) Gọi là trung điểm là giao điểm
của các đường thẳng 
Ta sẽ chứng minh 
Áp dụng định lý Ménélaus cho với cát tuyến ta có: 
Lấy sao cho . 
Khi đó do hai tam giác đồng dạng nên 
Do cân, nên cân, hay suy ra: 
Do là trung điểm của nên do đó 
Vậy điều phải chứng minh.
b) Đặt Ta sẽ chứng minh Thật vậy:
Trong tam giác có suy ra 
 (1)
Do thẳng hàng nên và do đó
 	(2)
Từ (1) và (2) suy ra , điều phải chứng minh.
Bài 7. Cho tam giác ABC, gọi M là chân đường vuông góc kẻ từ A xuống đường phân giác của góc BCA, N và L lần lượt là chân đường vuông góc kẻ từ A và C xuống đường phân giác của góc ABC. Gọi F là giao của MN và AC, E là giao của BF và CL, D là giao của BL và AC. Chứng minh rằng DE song song với MN
Lời giải.
Kéo dài AM cắt BC tại G, kéo dài AN cắt BC
tại I, kéo dài CL cắt AB tại J. 
Khi đó AM = MG. AN = NI suy ra MN và BC song song với nhau	 (1)
Vì AM = MG nên AF = FC. 
Gọi H là giao của LF và BC, ta có BH = CH.
Trong tam giác BLC có BE, LH, CD cắt 
nhau tại F, theo định lý Ceva ta có . 
Vì BH = CH nên , suy ra DE và BC song song với nhau 	(2)
Từ (1) và (2) suy ra MM song song với DE.
Bài 8. Cho DABC lấy E, F, M thứ tự trên cạnh AC, AB sao cho EF//BC, MB = MC. Chứng minh CF, BE , AM đồng quy.
Lời giải.
 Cách 1: (Chứng minh đồng quy) 
Gọi AM Ç EF = K 
Theo định lý Talét ta có: ; ; và 
A
F
M
B
C
K
E
Suy ra ..= 1
Áp dụng định lý Ceva cho DABC ta có CF, BE , AM đồng quy.
Cách 2: (Chứng minh thẳng hàng)
E
A
F
M
B
C
N
I
Từ A kẻ đường thẳng // BC cắt BE tại N, AM Ç BE = I 
Ta có =; =2; =
Suy ra ..=.2. =1
Áp dụng định lý Menelaus cho DABM thì F, I, C thẳng hàng.
Từ đó suy ra CF, BE , AM đồng quy.
Bài 9. Cho đường tròn nội tiếp DABC tiếp xúc các cạnh BC, CA, AB lần lượt tại D, E, F. Chứng minh AD, BE, CF đồng quy. 
Lời giải.
Cách 1: (Chứng minh đồng quy)
Theo tính chất hai tiếp tuyến cắt nhau:
AF = AE; BF = BD; CE = CD	
Suy ra ..=..=1
Áp dụng định lý Ceva cho DABC suy ra AD, BE, CF đồng quy. 
Cách 2: (Chứng minh thẳng hàng)
Từ A kẻ đt song song với BC cắt CF tại N
AD Ç CF = I. Ta có :
..=..=.==1 
Áp dụng định lí Menelaus cho DACD thì 
AD, BE, CF đồng quy.
B
C
F
A
E
D
B
C
F
A
E
D
I
N
A
B
C
D
M
N
H
E
Bài 10. Cho tam giác ABC đường cao AH. Lấy D,E thứ tự trên AB, AC sao cho AH là phân giác góc DHE. Chứng minh: AH, BE, CD đồng quy.
Lời giải.
Cách 1: (Chứng minh đồng quy)
Từ A kẻ đt // BC cắt HE, HD tại M và N
Vì HA là phân giác của góc A, HA là đường cao nên AM = AN
Ta có: ; Þ.
Áp dụng định lý Ceva cho DABC suy ra AH, BE, CD đồng quy.
Cách 2: (Chứng minh thẳng hàng)
Từ A kẻ đt // BC cắt HD, HE, BE lần lượt tại M, N, K. Gọi AH Ç BE = I 
Ta có: == và 
Þ.== ==1
Áp dụng định lí Menelaus cho DABH thì D, I, C thẳng hàng. Vậy AH, BE, CD đồng quy. 
A
B
C
D
M
N
H
E
K
I
H
A
B
G
E
C
K
D
I
F
Bài 11. Cho DABC vuông tại A, đường cao AK. Dựng bên ngoài tam giác những hình vuông ABEF và ACGH. Chứng minh: AK, BG, CE đồng quy.
Lời giải.
Cách 1: (Chứng minh đồng quy)
Gọi D = AB Ç CE, I = AC Ç BG
Đặt AB = c, AC = b. 
Ta có c2 = BK.BC; b2 = CK.BC 
Þ = và =; = 
(do DAIB ~ DCIG)
Þ ..=..=1
Áp dụng định lý Ceva cho DABC thì AK, BG, CE đồng quy.
 Cách 2: (Chứng minh thẳng hàng)
H
A
B
G
E
C
K
D
I
F
M
O
Từ A kẻ đường thẳng song song với BC cắt BG tại M. AK Ç BG tại O.
Ta có =; = suy ra ..=.. 
= ..=..=.=1
Áp dụng định lý Menelaus cho DABK 
thì D, O, C thẳng hàng.
Vậy AK, BG, CE đồng quy.

Tài liệu đính kèm:

  • docxde_kiem_tra_toan_hinh_chuyen_10_va_cac_bai_van_dung_dinh_ly.docx