Bộ đề ôn tập Toán 10 cuối năm

doc 13 trang Người đăng minhphuc19 Ngày đăng 13/02/2019 Lượt xem 58Lượt tải 0 Download
Bạn đang xem tài liệu "Bộ đề ôn tập Toán 10 cuối năm", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Bộ đề ôn tập Toán 10 cuối năm
BỘ ĐỀ ÔN TẬP TOÁN 10 CUỐI NĂM
Đề số 1:
I. PHẦN CHUNG DÀNH CHO TẤT CẢ HỌC SINH: (7,0 điểm)
Câu I. (1,0 điểm)
	Giải bất phương trình: 
Câu II:(2,0 điểm) 
Giải phương trình: .
Tìm các giá trị của m để biểu thức sau luôn không âm:
f(x) = m.x2 – 4x + m
Câu III:(2,0 điểm)
Cho 900 < x < 1800 và sinx = . Tính giá trị biểu thức:
Cho a, b, c lần lượi là độ dài 3 cạnh của tam giác ABC. Chứng minh rằng:
Câu IV:(1,0 điểm) 	
 Số lượng sách bán ra của một cửa hàng các tháng trong năm 2010 được thống kê trong bảng sau đây ( số lượng quyển):
Tháng
1
2
3
4
5
6
7
8
9
10
11
12
Số lượng
430
560
450
550
760
430
525
410
635
450
800
950
 	 Tính số trung bình và số trung vị của mẫu số liệu trên.
Câu V:(1,0 điểm) 
 Trong mặt phẳng Oxy cho điểm M(9; 1). Lập phương trình đường thẳng (d) đi qua M cắt các tia Ox, Oy lần lượt tại A; B sao cho diện tích nhỏ nhất.
II. PHẦN RIÊNG: (3,0 điểm) ( Thí sinh chỉ được chọn A hoặc B, nếu chọn cả A và B sẽ không được tính điểm ở phần riêng)
Dành cho học sinh học chương trình chuẩn.
Câu VIa:(1,0 điểm)
 Tìm các giá trị của m để phương trình (m + 2)x2 + 2(2m - 3)x + 5m - 6 = 0 có hai nghiệm phân biệt trái dấu.
Câu VII.a:(2,0 điểm)
1) Trong mặt phẳng Oxy cho điểm A(- 2; 3) và đường thẳng (D) có phương trình 
3x + y - 7 = 0. Viết phương trình tham số của đường thẳng đi qua A vuông góc với (D) và tìm tọa độ giao điểm M của với (D).
2) Viết phương trình chính tắc của elip (E) biết (E) có một tiêu điểm và đi qua điểm .
	B. Dành cho học sinh học chương trình nâng cao.
Câu VI.b:(1,0 điểm)
Giải phương trình sau: 9.
Câu VIIb:(2,0 điểm) 
Viết phương trình chính tắc của Hypebol (H) biết (H) đi qua điểm và một đường tiệm cận của (H) tạo với trục tung một góc 300. 
Trong mặt phẳng toạ độ Oxy cho hình chữ nhật ABCD tâm I có cạnh AB nằm trên đường thẳng và AB = 2.AD. 
Lập phương trình đường thẳng AD, BC
Hết.
Đề số 2:
Câu 1: Giải các bất phương trình và hệ bất phương trình sau: 
	a) .	b) . 	c). 
Câu 2: Cho bất phương trình sau: .
	a) Giải bất phương trình với m = 1.
	b) Tìm điều kiện của m để bất phương trình nghiệm đúng với mọi x thuộc R.
Câu 3: Tìm các giá trị lượng giác của cung biết: và .
Câu 4: Trong mặt phẳng Oxy, cho ba điểm A(–1; 0), B(1; 6), C(3; 2).
	a) Viết phương trình tham số của đường thẳng AB.
	b) Viết phương trình tổng quát của đường cao CH của tam giác ABC (H thuộc đường thẳng AB). Xác định tọa độ điểm H.
	c) Viết phương trình đường tròn (C) có tâm là điểm C và tiếp xúc với đường thẳng AB.
Câu 5 : Chiều cao của 45 học sinh lớp 5 (tính bằng cm) được ghi lại như sau :
102
102
113
138
111
109
98
114
101
103
127
118
111
130
124
115
122
126
107
134
108
118
122
99
109
106
109
104
122
133
124
108
102
130
107
114
147
104
141
103
108
118
113
138
112
 a) Lập bảng phân bố ghép lớp [98; 103); [103; 108); [108; 113); [113; 118); [118; 123); [123; 128); [128; 133); [133; 138); [138; 143); [143; 148].
b) Tính số trung bình cộng.
c) Tính phương sai và độ lệch chuẩn.
Câu 6 :a) Cho cota = . Tính 
	b) Cho . Tính giá trị biểu thức 
Đề số 3:
Câu 1: a) Cho x, y > 0. Chứng minh rằng: 	
	b) Giải bất phương trình: 
Câu 2: Tìm tất cả các giá trị của m để phương trình sau có 2 nghiệm phân biệt:
Câu 3: Cho tam giác ABC có A(1; 1), B(– 1; 3) và C(– 3; –1).
	a) Viết phương trình đường thẳng AB. 
	b) Viết phương trình đường trung trực D của đọan thẳng AC. 
	c) Tính diện tích tam giác ABC.	
Câu 4: Cho tan = . Tính giá trị biểu thức : A = .
Câu 5: Số tiết tự học tại nhà trong 1 tuần (tiết/tuần) của 20 học sinh lớp 10 trường THPT A được ghi nhận như sau : 
	9 15 11 12 16 12 10 14 14 15 16 13 16 8 9 11 10 12 18 18
a) Lập bảng phân bố tần số, tần suất cho dãy số liệu trên. 
b) Vẽ biểu đồ đường gấp khúc theo tần số biểu diễn bảng phân bố trên. 
c) Tính số trung bình cộng, phương sai và độ lệch chuẩn của giá trị này. 
Đề số 4:
Câu 1: a) Cho a, b, c > 0. Chứng minh rằng: 
	b) Giải bất phương trình:	
Câu 2: Cho phương trình: 	
	a) Chứng minh phương trình luôn có nghiệm với mọi m .
	b) Tìm m để phương trình có hai nghiệm trái dấu .	
Câu 3: Trong mặt phẳng Oxy, cho DABC với A(1; 2), B(2; –3), C(3; 5).
	a) Viết phương trình tổng quát của đường cao kẻ từ A.
	b) Viết phương trình đường tròn tâm B và tiếp xúc với đường thẳng AC.
	c) Viết phương trình đường thẳng D vuông góc với AB và tạo với 2 trục toạ độ một tam giác có diện tích bằng 10.
Câu 4 : Điểm trung bình kiểm tra của 2 nhóm học sinh lớp 10 được cho như sau:
	Nhóm 1: (9 học sinh)	1, 2, 3, 5, 6, 6, 7, 8, 9
	Nhóm 2: (11 học sinh)	1, 3, 3, 4, 4, 6, 7, 7, 7, 8, 10
	a) Hãy lập các bảng phân bố tần số và tuần suất ghép lớp với các lớp [1, 4]; [5, 6];
	 [7, 8]; [9, 10] của 2 nhóm.
	b) Tính số trung bình cộng, phương sai, độ lệch chuẩn ở 2 bảng phân bố.
	c) Nêu nhận xét về kết quả làm bài của hai nhóm.
	d) Vẽ biểu đồ tần suất hình cột của 2 nhóm.
Câu 5: a) Chứng minh:	
	b) Rút gọn biểu thức: . Sau đó tính giá trị của biểu thức khi .
Đề số 5:
Câu 1: 
	1) Cho a, b, c > 0 . Chứng minh rằng: 
	2) Giải các bất phương trình sau: 
	a) b) 
Câu 2: Tìm m để biểu thức sau luôn luôn dương: 
Câu 3: Cho tam giác ABC có A = 600; AB = 5, AC = 8. Tính diện tích S, đường cao AH và bán kính đường tròn ngoại tiếp của DABC.
Câu 4: Trong mặt phẳng Oxy, cho tam giác có A(1; 4), B(4; 6), 
	a) Chứng minh rằng tam giác ABC vuông tại B
	b) Viết phương trình đường tròn đường kính AC
Câu 5: Để khảo sát kết quả thi tuyển sinh môn Toán trong kì thi tuyển sinh đại học năm vừa qua của trường A, người điều tra chọn một mẫu gồm 100 học sinh tham gia kì thi tuyển sinh đó. Điểm môn Toán (thang điểm 10) của các học sinh này được cho ở bảng phân bố tần số sau đây.
Điểm
0
1
2
3
4
5
6
7
8
9
10
Tần số
1
1
3
5
8
13
19
24
14
10
2
N=100
	a) Hãy lập bảng phân bố tần suất. 
	b) Tìm mốt, số trung vị. 	
	c) Tìm số trung bình, phương sai và độ lệch chuẩn (chính xác đến hàng phần trăm).
Câu 6 : a) Tính giá trị các biểu thức sau:	, 
	b) Cho sina + cosa = . Tính sina.cosa 
Đề số 6: 
Câu 1: 1) Giải các bất phương trình sau: 
	a) 	b) 
	2) Cho các số a, b, c ³ 0. Chứng minh: 
Câu 2: Cho phương trình: 	
	a) Chứng minh phương trình luôn có nghiệm
	b) Tìm m để phương trình có 2 nghiệm trái dấu
Câu 3: 
	a) Chứng minh đẳng thức sau:	 
	b) Cho sina + cosa = . Tính sina.cosa
Câu 4 : Điểm thi của 32 học sinh trong kì thi Tiếng Anh (thang điểm 100) như sau :
68 79 65 85 52 81 55 65 49 42 68 66 56 57 65 72
69 60 50 63 74 88 78 95 41 87 61 72 59 47 90 74
	a) Hãy trình bày số liệu trên dưới dạng bảng phân bố tần số, tần suất ghép lớp với các lớp: 	.
	b) Nêu nhận xét về điểm thi của 32 học sinh trong kì thi Tiếng Anh kể trên ?
	c) Hãy tính số trung bình cộng, phương sai, độ lệch chuẩn của các số liệu thống kê đã cho? (Chính xác đến hàng phần trăm ).
	d) Hãy vẽ biểu đồ tần suất hình cột để mô tả bảng phân bố tần suất ghép lớp đã lập ở câu a).
Câu 5: a) Cho đường thẳng d: và điểm A(3; 1). Tìm phương trình tổng quát của đường thẳng (D) qua A và vuông góc với d.
	b) Viết phương trình đường tròn có tâm B(3; –2) và tiếp xúc với (D¢): 5x – 2y + 10 = 0.
	c) Lập chính tắc của elip (E), biết một tiêu điểm của (E) là F1(–8; 0) và điểm M(5; –3) thuộc elip.
Đề số 7:
Câu 1: 1) Giải các bất phương trình sau: 
	a) 	b) 
	2) Cho y = (x + 3)(5 – 2x), –3 £ x £ . Định x để y đạt giá trị lớn nhất.
Câu 2: Cho phương trình: 
	a) Chứng minh phương trình luôn có nghiệm
	b) Tìm m để phương trình có 2 nghiệm trái dấu
Câu 3 : Trong hệ trục tọa độ Oxy, cho đường tròn (C ): 
	a) Xác định tâm I và bán kính R của (C )
	b) Viết phương trình đường thẳng D qua I, song song với đường thẳng d: x – y – 1 = 0
	c) Viết phương trình tiếp tuyến của (C ) vuông góc với D
Câu 4: a) Cho cos – sin = 0,2. Tính ?
	b) Cho . Tính giá trị biểu thức .
Câu 5: Tiền lãi (nghìn đồng) trong 30 ngày được khảo sát ở một quầy bán báo.
81 37 74 65 31 63 58 82 67 77 63 46 30 53 73 
51 44 52 92 93 53 85 77 47 42 57 57 85 55 64
	a) Hãy lập bảng phân bố tần số và tần suất theo các lớp như sau:
	[29.5; 40.5), [40.5; 51.5), [51.5; 62.5), [62.5; 73.5), [73.5; 84.5), [84.5; 95.5]
	b) Tính số trung bình cộng, phương sai, độ lệch chuẩn ?
Đề số 8:
Câu 1: 1) Giải các bất phương trình sau:
	a) 	b) 
	2) Cho . Định x để y đạt giá trị nhỏ nhất.
Câu 2: Sau một tháng gieo trồng một giống hoa, người ta thu được số liệu sau về chiều cao (đơn vị là milimét) của các cây hoa được trồng:
Nhóm
Chiều cao
Số cây đạt được
1
Từ 100 đến 199
20
2
Từ 200 đến 299
75
3
Từ 300 đến 399
70
4
Từ 400 đến 499
25
5
Từ 500 đến 599
10
	a) Lập bảng phân bố tần suất ghép lớp của mẫu số liệu trên.
	b) Vẽ biểu đồ tần suất hình cột .
	c) Hãy tính số trung bình cộng, phương sai, độ lệch chuẩn của các số liệu thống kê. 
Câu 3: a) Cho tana = 3 . Tính 
 	b) Cho . Tính giá trị biểu thức .
Câu 4: Trong mặt phẳng tọa độ Oxy, cho 3 điểm A(0; 9), B(9; 0), C(3; 0)
	a) Tính diện tích tam giác ABC.
	b) Viết phương trình đường thẳng d đi qua C và vuông góc với AB
	c) Xác định tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC
Đề số 9:
Câu 1: Giải các phương trình và bất phương trình sau:
	a) 	b) 
Câu 2: Định m để bất phương trình sau đúng với mọi xÎR:
Câu 3:	Rút gọn biểu thức . Sau đó tính giá trị biểu thức A khi .
Câu 4: Chiều cao của 40 vận động viên bóng chuyền được cho trong bảng sau: 
Lớp chiều cao (cm)
Tần số
[ 168 ; 172 )
[ 172 ; 176 )
[ 176 ; 180 )
[ 180 ; 184 )
[ 184 ; 188 )
[ 188 ; 192 ]
4
4
6
14
8
4
Cộng
40
	a) Hãy lập bảng phân bố tần suất ghép lớp ?
	b) Nêu nhận xét về chiều cao của 40 vận động viên bóng chuyền kể trên ?
	c) Tính số trung bình cộng, phương sai, độ lệch chuẩn ?
	d) Hãy vẽ biểu đồ tần suất hình cột để mô tả bảng phân bố tần suất ghép lớp đã lập ở câu a).
Câu 5: Trong mặt phẳng toạ độ Oxy, cho A(–1; 2), B(3; –5), C(4; 7).
	a) Viết phương trình đường vuông góc AH kẻ từ A đến trung tuyến BK của tam giác ABC. 
	b) Tính diện tích tam giác ABK. 
	c) Viết phương trình đường thẳng qua A và chia tam giác thành 2 phần sao cho diện tích phần chứa B gấp 2 lần diện tích phần chứa C.
	d) Viết phương trình đường tròn ngoại tiếp . Tìm tâm và bán kính của đường tròn này.
Đề số 10:
Câu 1: 1) Cho ba số dương a, b, c. Chứng minh: 
	2) Giải các bất phương trình sau:
	a) 	b) 
Câu 2: a) Tính các giá trị lượng giác sin2a, cos2a biết cota = -3 và .
 	b) Cho biết . Tính giá trị của biểu thức : 
Câu 3: Trong mặt phẳng toạ độ Oxy, cho A(–1; 2), B(3; –5), C(–4; –9).
	a) Tính độ dài các cạnh của tam giác ABC.
	b) Tính diện tích tam giác ABC và bán kính đường tròn ngoại tiếp tam giác.
	c) Viết phương trình đường tròn ngoại tiếp tam giác ABC.	
Câu 4: Cho ABC có , AC = 8 cm, AB = 5 cm. 
	a) Tính cạnh BC.
	b) Tính diện tích ABC.
	c) Chứng minh góc nhọn.
	d) Tính bán kính đường tròn nội tiếp và ngoại tiếp tam giác ABC.
	e) Tính đường cao AH.
Đề số 11:
Câu 1: Cho . Tìm m để:
	a) Phương trình f(x) = 0 có 2 nghiệm trái dấu
	b) Bất phương trình f(x) ³ 0 có tập nghiệm R 
Câu 2: Giải hệ bất phương trình 
Câu 3: a) Chứng minh biểu thức sau đây không phụ thuộc vào .
	b) Cho P = và 
	Tính P + Q = ?
Câu 4: Trong mặt phẳng toạ độ Oxy, cho đường tròn có phương trình:
	a) Xác định toạ độ tâm và tính bán kính của đường tròn.
	b) Lập phương trình tiếp tuyến của đường tròn, biết tiếp tuyến song song với đường thẳng d có phương trình: .
Đề số 12:
Câu 1 : Cho phương trình: .
	a) Tìm m để phương trình có 2 nghiệm phân biệt.	
	b) Tìm m để phương trình có 2 nghiệm dương phân biệt. 
Câu 2: Giải hệ bất phương trình:	
Câu 3: Cho tam giác ABC có a = 5, b = 6, c = 7 . Tính:
	a) Diện tích S của tam giác.
	b) Tính các bán kính R, r. 
	c) Tính các đường cao ha, hb, hc.
Câu 4: Rút gọn biểu thức 
Câu 5: Trong mặt phẳng toạ độ Oxy, cho 3 điểm A(0; 8), B(8; 0) và C(4; 0)
	a) Viết phương trình đường thẳng (d) qua C và vuông góc với AB.
	b) Viết phương trình đường tròn (C) ngoại tiếp tam giác ABC. 
	c) Xác định toạ độ tâm và bán kính của đường tròn đó.
Đề số 13:
Câu 1: Giải các bất phương trình sau:
	a) 	b) 	c) 
Câu 2: Định m để hàm số sau xác định với mọi x: 	.
Câu 3: a) Tính .
	b) Cho với . Tính cosa, tana.
	c) Chứng minh:	.
Câu 4: Cho tam giác ABC có AB = 3, AC = 4, BC = 5 . Tính cosB = ?
Câu 5: a) Viết phương trình đường tròn tâm I(1; 0) và tiếp xúc với trục tung.
	b) Viết phương trình tiếp tuyến của đường tròn tại điểm M(2; 1) 
	c) Cho tam giác ABC có M(1; 1), N(2; 3), P(4; 5) lần lượt là trung điểm của AB, AC, BC. 
 Viết phương trình đường thẳng trung trực của AB?
Đề số 14:
Câu 1: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số:
	 với 	
Câu 2: Giải hệ bất phương trình sau: 	
Câu 3: 1) Tính các giá trị lượng giác của cung , biết:
	a) 	b) 
	2) Rút gọn biểu thức: 	A = 
Câu 4: Cho tam giác ABC có AB = 5, AC = 7, BC = 8. Tính độ dài đường trung tuyến BM = ?
Câu 5: Trong mặt phẳng Oxy, cho tam giác ABC có A(1; 2), B(–3; 0), C(2; 3) .
	a) Viết phương trình đường cao AH và trung tuyến AM.
	b) Viết phương trình đường tròn có tâm A và đi qua điểm B .
	c) Tính diện tích tam giác ABC .
Đề số 15:
Câu 1: Cho .
	a) Giải bất phương trình: f(x) > 0 với m = – 2.
	b) Tìm m để phương trình f(x) = 0 có 2 nghiệm dương phân biệt.
Câu 2: a) Xét dấu tam thức bậc hai sau: 	
 	b) Giải phương trình: =
Câu 3: Chứng minh các đẳng thức sau:
 	a) 	b) 
	c) 
Câu 4: Trong mặt phẳng Oxy, cho tam giác ABC có A(4; 3), B(2; 7), C(–3: 8) .
	a) Viết phương trình đường cao của tam giác ABC kẻ từ đỉnh A .
	b) Viết phương trình đường tròn có tâm A và đi qua điểm B .
	c) Tính diện tích tam giác ABC .
Đề số 16:
Câu 1: Định m để phương trình sau có nghiệm:	
Câu 2: Cho a, b, c là những số dương. Chứng minh: .
Câu 3 : Cho tam giác ABC biết A(1; 4); B(3; –1) và C(6; 2).
	a) Lập phương trình tổng quát của các đường thẳng AB, CA.
	b) Lập phương trình tổng quát của đường trung tuyến AM.
Câu 4: a) Cho đường thẳng d: . Tìm toạ độ điểm M thuộc trục hoành sao cho khoảng cách từ M đến d bằng 4.
	b) Viết phương trình đường tròn tâm I(2; 0) và tiếp xúc với trục tung.
Câu 5: 
a) Cho với . Tính các giá trị lượng giác còn lại.
	b) Cho và . Tính góc a + b =?
Đề số 17:
Câu 1: Giải các bất phương trình sau:
	a) 	b) 
Câu 2: Cho phương trình: . Tìm các giá trị của m để:
	a) Phương trình trên có nghiệm.
	b) Phương trình trên có hai nghiệm dương phân biệt.
Câu 3: a) Cho . Tính .
	b) Biết , tính 
Câu 4: Cho ABC với A(2, 2), B(–1, 6), C(–5, 3).
	a) Viết phương trình các cạnh của ABC.
	b) Viết phương trình đường thẳng chứa đường cao AH của ABC.
	c) Chứng minh rằng ABC là tam giác vuông cân.
Câu 5: Cho đường thẳng d có phương trình , và đường tròn (C) có phương trình: . Tìm m để đường thẳng d tiếp xúc với đường tròn (C) ?
Đề số 18:
Câu 1: a) Với giá trị nào của tham số m, hàm số có tập xác định là (–).
	b) Giải bất phương trình sau: 
Câu 2: 1) Rút gọn biểu thức 
	2) Cho A, B, C là 3 góc trong 1 tam giác. Chứng minh rằng:	
	 	a) 	 b) .
	3) Tính giá trị biểu thức 
Câu 3: Có 100 học sinh tham dự kỳ thi học sinh giỏi môn toán, kết quả được cho trong bảng sau: (thang điểm là 20) 
Điểm
9
10
11
12
13
14
15
16
17
18
19
Tần số
1
1
3
5
8
13
19
24
14
10
2
N=100
	a) Tính số trung bình và số trung vị.
	b) Tính phương sai và độ lệch chuẩn.
Câu 4: Cho hai đường thẳng D: và D¢: .
	a) Chứng minh rằng vuông góc với 
	b) Tính khoảng cách từ điểm M(2; –1) đến 
Câu 5: 
	a) Cho tam giác ABC có A(3; 1), B(–3; 4), C(2: –1) và M là trung điểm của AB . Viết phương trình tham số của trung tuyến CM.
	b) Lập phương trình tiếp tuyến của đường tròn (C): tại M(2; 1).
Đề số 19:
Câu 1: Giải bất phương trình: 	
Câu 2: Cho phương trình: . Tìm các giá trị của m để phương trình có:
	a) Hai nghiệm phân biệt	
	b) Hai nghiệm dương phân biệt.
Câu 3: a). Chứng minh rằng: .
	b) 
 c) Chứng minh biểu thức sau đây không phụ thuộc vào ?
Câu 4 : Trong mặt phẳng Oxy, cho đường thẳng 
	a) Tìm tọa độ các điểm M, N lần lượt là giao điểm của (d) với Ox, Oy.
	b) Viết phương trình đường tròn (C) ngoại tiếp tam giác OMN.
	c) Viết phương trình tiếp tuyến của (C) tại điểm M.
	d) Viết phương trình chính tắc của Elip đi qua điểm N và nhận M làm một tiêu điểm.
Câu 5: Cho tam giác ABC có b =4 ,5 cm , góc , 
	a) Tính các cạnh a, c.
	b) Tính góc .
	c) Tính diện tích ABC.
	d) Tính độ dài đường cao BH.
Đề số 20:
Câu 1: Giải các bất phương trình sau : 
	a) 	b) 
Câu 2: Cho .
	a) Tìm m để phương trình f (x) = 0 có nghiệm 
	b) Tìm m để f (x) £ 0 , 
Câu 3: a) Cho . Tính 
	b) Rút gọn biểu thức: 	B = 
Câu 4: Trong mặt phẳng tọa độ Oxy, cho 3 điểm A(1; 4), B(–7; 4), C(2; –5).
	a) Chứng tỏ A, B, C là 3 đỉnh của một tam giác.
	b) Viết phương trình đường tròn qua 3 điểm A, B, C.
	c) Viết phương trình đường cao AH của tam giác ABC.
Câu 5: Cho ABC có a = 13 cm, b = 14 cm, c = 15 cm.
	a) Tính diện tích ABC.
	b) Tính góc ( tù hay nhọn)
	c) Tính bán kính đường tròn nội tiếp và ngoại tiếp tam giác ABC.
	d) Tính , ?
Đề số 21:
Câu 1: Giải các bất phương trình sau:
	a)	b) 
Câu 2: Cho bất phương trình:	
	a) Giải bất phương trình với m = –3.
	b) Với những giá trị nào của m thì bất phương trình vô nghiệm?
	c) Xác định m để bất phương trình nghiệm đúng với mọi giá trị của x ?
Câu 3: Chứng minh bất đẳng thức: với a, b, c 0 
Câu 4: Chứng minh rằng: 
	a) 
	b) 
Câu 5: Trong mặt phẳng toạ độ Oxy, cho 3 điểm A(–2; 1), B(1; 4), C(3; –2). 
	a) Chứng tỏ rằng A, B, C là 3 đỉnh của một tam giác.
	b) Viết phương trình đường thẳng (d) đi qua A và song song với BC.
	c) Viết phương trình đường trung tuyến AM của ΔABC.
	d) Viết phương trình của đường thẳng đi qua trọng tâm G của ΔABC và vuông góc với BC.
Đề số 22:
Câu 1:( 2,5 điểm) a) Giải bất phương trình: 
b) Tìm m để bất phương trình: mx2 – 2(m -2)x + m – 3 > 0 nghiệm đúng với mọi giá trị của x
Câu 2: ( 2 điểm)
 Cho các số liệu thống kê về sản lượng chè thu được trong 1năm ( kg/sào) của 20 hộ gia đình
111
112
112
113
114
114
115
114
115
116
112
113
113
114
115
114
116
117
113
115
a) Lập bảng phân bố tần số - tần suất;
b) Tìm số trung bình, trung vị, mốt.
Câu 3: (1,5 điểm) Chứng minh: 
Câu 4: (3,5 điểm) 
Trong mặt phẳng tọa độ Oxy cho hai điểm, điểm và:
a) Chứng minh rằng vuông tại O;
b) Tính độ dài và viết phương trình đường cao OH của ;
c) Viết phương trình đường tròn ngoại tiếp .
-----Câu 5: ( 0,5 điểm):
 Cho đường thẳng d: x – 2y + 15 = 0. Tìm trên d điểm M (xM ; yM ) sao cho x2M + y2M nhỏ nhất---
-- Đề số 23:
Bài 1 . (1,0điểm)
	Số tiền cước phí điện thoại ( đơn vị nghìn đồng ) của 8 gia đình trong một khu phố A phải trả được ghi lại như sau: 85 ; 79 ; 92 ; 85 ; 74 ; 71 ;
62 ; 110.Chọn một cột trong các cột A, B, C, D mà các dữ liệu được điền đúng :
A
B
C
D
Mốt
110
92
85
62
Số trung bình
82.25
80
82.25
82.5
Số trung vị
79
85
82
82
Độ lệch chuẩn
13.67
13.67
13.67
13.67
Bài 2. (2,0điểm)
	a. Giải bất phương trình: 
b. Giải phương trình: 
Bài 3.(2,0 điểm)
Cho biểu thức : 
Tính giá trị của M biết 
Bài 4. (1,0điểm)
Lập phương trình chính tắc của hyperbol có 1 đường tiệm cận là và có hai tiêu điểm trùng với 2 tiêu điểm của elip : 2x2 + 12y2 = 24.
Bài 5.(2,0điểm)
Trong mặt phẳng với hệ tọa độ Đêcac vuông góc Oxy, xét tam giác ABC vuông tại A, phương trình đường thẳng BC là , các đỉnh A và B thuộc trục hoành và bán kính đường tròn nội tiếp bằng 2. Tìm tọa độ trọng tâm G của tam giác ABC.
Bài 6. (2,0điểm)
1) Chứng minh rằng nếu tam giác ABC có các góc A, B, C thỏa mãn điều kiện: thì tam giác ABC cân.
2) Giải hệ phương trình: 
hhfj-- Đề số 24:
Câu I. ( 2, 0 điểm )
1. Vẽ đồ thị hàm số y = - x2 + 4x – 3.
2. Tìm tập xác định của hàm số: 	y = 
Câu II. ( 2,5 điểm )
 Cho phương trình: .
1. Giải phương trình khi m = .
2. Xác định m để phương trình có 4 nghiệm phân biệt 
Câu III. ( 1, 0 điểm )
Cho với . Tính: 
Câu IV. ( 3,5 điểm )
 1. Trong mặt phẳng Oxy cho đường thẳng (d) : 3x – 4y + 24 = 0 .
a) Xác định điểm A và B lần lượt là giao điểm của (d) với Ox; Oy.
b)Viết phươn

Tài liệu đính kèm:

  • doc25_bo_de_thi_HKII_toan_10.doc